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Time-varying market return volatility creates substantial heteroscedasticity
in time-series return predictability regressions. Prior literature on predictabil-
ity typically addresses this heteroscedasticity using ordinary least squares
(OLS) with White (1980) heteroscedasticity-consistent standard errors.
However, research on the econometrics of predictability regressions (e.g.,
Singleton 2006; Johannes, Korteweg, and Polson 2014; Westerlund and
Narayan 2014) suggests incorporating return heteroscedasticity into point
estimates as well as standard errors using the generalized least squares
(GLS) insight, resulting in a more efficient estimator that is less noisy and
has more power in finite samples.
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Following this suggestion, I assess the predictability afforded by a broad
set of variables using an alternative estimator that is more efficient thanOLS.
The source of these efficiency gains is downweighting observations with low
signal-to-noise ratios. For example, in October 2008, the VIX index peaked
at 80%, more than four times its median level. At such extremes, realized
returns are particularly noisy proxies for expected returns, making the signal-
to-noise ratio low and OLS’s equal weighting inefficiently high. My estima-
tor, weighted least squares using ex ante variance (WLS-EV), addresses this
inefficiency by scaling regression residuals by an estimate of ex ante return
volatility, making them comparable in terms of information about expected
returns. This weighting represents the standard GLS insight applied to time-
series return predictability, a natural setting given the accurate ex ante meas-
ures of return volatility and the importance of power in finite samples.1

I show that three conclusions about return predictability change when
using WLS-EV instead of OLS. First, using WLS-EV strengthens the evi-
dence of predictability for many of the variables studied in Goyal andWelch
(2008), including the dividend yield and other theoretically motivated pre-
dictors, indicating the insignificant OLS estimates are false negatives stem-
ming from inefficient estimation rather than a failure of return predictability.
After adjusting for the Stambaugh (1999) small-sample bias, in-sampleWLS-
EV estimates indicate 9 of the 16 variables studied inGoyal andWelch (2008)
significantly predict next-month returns at the 5% level, compared to only 2
of the 16 for OLS estimates. The in-sample evidence for these predictors is
stronger for WLS-EV because it reduces estimation error, and therefore
standard errors, while having little impact on point estimates relative toOLS.
One of the criticisms of time-series return predictabilitymade inGoyal and

Welch (2008) is that most predictors perform poorly in rolling out-of-sample
tests. I show the out-of-sample performance of these predictors substantially
improves when using WLS-EV instead of OLS. The improvement is spread
across a majority of the predictors and is economically significant, with av-
erage out-of-sample R2 (OOS R2 hereafter) increasing by 59% and 120% of
the average in-sample OLS R2 for next-month and next-year returns,
respectively.
The literature contains other approaches to improving out-of-sample per-

formance that typically generate even higher OOS R2 than WLS-EV.
Examples include imposing economic restrictions on return forecasts
(Campbell and Thompson 2008; Pettenuzzo, Timmermann, and Valkanov
2014), allowing for time-varying means (Lettau and Van Nieuwerburgh
2008), and using Bayesian estimates that incorporate estimation risk and
time-varying volatility (Johannes, Korteweg, and Polson 2014). Unlike these
approaches, WLS-EV is not designed for out-of-sample predictability,

1 I illustrate WLS-EV’s effectiveness in this setting by showing it produces point estimates that are between 25%
and 35% less volatile across simulated samples than OLS estimates. See Appendix Appendix B. for details.
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though it does outperform OLS. Instead, WLS-EV is designed for inference,
providing amore efficient in-sample test of the same “no time-invariant linear
predictability” null hypothesis as OLS.
MyWLS-EV results indicate four predictors (long-term bond return, term

spread, inflation, and the consumption-to-wealth ratio) consistently and sig-
nificantly predict returns both in-sample and out-of-sample, the Goyal and
Welch (2008) standard for evaluating predictability.2 Three additional pre-
dictors (dividend yield, Treasury-bill yield, and payout yield) meet this stan-
dard when using simple economic restrictions for out-of-sample tests along
with WLS-EV. None of the predictors meet the Goyal and Welch (2008)
standard when using OLS. For three other predictors (dividend-to-price ra-
tio, earnings-to-price ratio, and Treasury bond yield), WLS-EV produces
evidence for predictability that is stronger than OLS, but not consistently
significant across specifications. Both WLS-EV and OLS are pessimistic
about the remaining six predictors (dividend-to-earnings ratio, conditional
variance, default spread, book-to-market ratio, cross-sectional beta pre-
mium, and net equity expansion), with neither approach producing more
than fleeting evidence of predictability in my 1927–2015 sample.
Inmy second application, I show the predictability afforded by proxies for

the conditional variance risk premium ( ^VRP) is not robust to the WLS-EV
approach. Both Bollerslev, Tauchen, and Zhou (2009) and Drechsler and
Yaron (2011) estimate ^VRP using the difference between option-implied
variance and expected realized variance, and show their measures predict
future equity returns in OLS regressions. I show that, regardless of variable
construction, forecast horizon, sampling frequency, sample period, or coun-
try, WLS-EV estimates of the relation between ^VRP and future market
returns are not statistically significant.
WLS-EV point estimates of the ^VRP-return relation are insignificant de-

spite smaller standard errors because they are much closer to zero than their
OLS counterparts. This implies the OLS estimates are largely driven by a few
observations with extremely positive or negative values of ^VRP and high ex
ante return volatility. WLS-EV downweights these observations, relying
more on the rest of the sample in which volatility is less extreme and ^VRP
is less predictive of future returns. The combined OLS and WLS-EV results
do not indicate statistically significant evidence for a linear relation between
the variance risk premium and future equity returns and suggests there may
be a nonlinear or time-varying relation that is beyond the scope of both OLS
and WLS-EV.
Inmy third application, I show theWLS-EV approach substantially weak-

ens the surprising predictability afforded by politics, the weather, and—even
more puzzlingly—the angle between Mars and Saturn, documented in

2 See panel A of Table 2 for references to the original research documenting return predictability for each of the
Goyal and Welch (2008) variables.
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Novy-Marx (2014). All three market return predictors in Novy-Marx (2014)
have smaller coefficient estimates and larger p-values when using WLS-EV
instead of OLS, with two becoming insignificant. Furthermore, WLS-EV
estimates indicate the 10 predictors proposed in Novy-Marx (2014) are
jointly insignificant.
I examine one of theNovy-Marx (2014) predictors, the party of theUnited

States president, in more detail because it is related to ongoing research
connecting stock returns with political preferences and uncertainty. Santa-
Clara and Valkanov (2003) documents that average market returns are
higher while the president is a Democrat than a Republican, a finding the
authors refer to as the “presidential puzzle.” P�astor and Veronesi (2017)
argues the presidential puzzle is attributable to a correlation between election
results and risk premiums, whereby voters elect Democrats during risky time
periods with high expected returns.
I provide evidence for an alternative explanation of the presidential puzzle:

unexpected returns in a few time periodswith high ex ante volatility happened
to be positive under Democrats and negative under Republicans. Consistent
with this interpretation, WLS-EV estimates of the relation between the pres-
ident’s party and stock returns are less than half of OLS estimates (4.38% per
year vs. 10.20%), and statistically insignificant. I also show that even OLS
estimates are insignificant when excluding a small set of observations with
extreme ex ante volatility, during which markets had extremely positive av-
erage returns under Democrats and negative average returns under
Republicans. This pattern is more consistent with unexpected returns than
expected returns, which should be positive and moderate. Rather than ex-
cluding these observations, WLS-EV downweights them to reflect their nois-
iness asmeasures of expected returns, but the conclusion remains that there is
no statistically significant evidence of higher returns under Democratic
presidents.3

For both variance risk premium proxies and the Novy-Marx (2014) pre-
dictors, WLS-EV estimates are insignificant, whereas OLS estimates are sig-
nificant, despite both being asymptotically unbiased tests of the same null
hypothesis. One potential reason for this difference is that OLS Newey and
West (1987) standard errors are downward biased in small samples with
extreme heteroscedasticity. Consistent with this possibility, I find that the
variance risk and Novy-Marx (2014) variables often lose significance as a
predictor when using OLS combined with p-values based on heteroscedastic
simulations.
However, small sample biases alone do not explain why WLS-EV coeffi-

cients are so much lower, and simulated p-values so much higher, than their
OLS counterparts. A possible explanation is that some of the predictors were

3 Powell et al. (2007) also concludes the presidential puzzle is spurious after adjusting standard errors for the
extreme persistence of the president’s party and moderate autocorrelation in returns.
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selected via data mining targeting OLS significance. To illustrate this possi-
bility, I simulate samples under the no predictability null hypothesis and
show that when OLS estimates are falsely significant, WLS-EV point esti-
mates are closer to zero on average and statistically insignificant inmore than
50% of simulations. Consistent with this data mining interpretation, WLS-
EV estimates for the variance risk premium and Novy-Marx (2014) predic-
tors are insignificant despite having smaller confidence intervals than OLS
estimates because they are substantially closer to zero. I also show that if data
mining targeted WLS-EV significance, OLS estimates would be similarly
useful as a partially independent test of the same null hypothesis. However,
any data mining in existing literature targeted OLS significance, making
WLS-EV a useful diagnostic for revisiting return predictability.
A natural concern about the insignificant WLS-EV estimates of the pre-

dictability associated with the variance risk premium and the Novy-Marx
(2014) variables is that they downweight the times we may care about most
economically, those occurring after amarket crash.4However, it is important
to note WLS-EV downweights these observations econometrically and not
economically. Unlike economically distinct alternatives, ex ante volatile
observations have the same linear relation between Xt and Eðrtþ1Þ in
WLS-EV like in OLS, they are just downweighted econometrically to pro-
duce more efficient point estimates. Neither OLS nor WLS-EV address eco-
nomically distinct alternatives such as time-varying predictability that is
stronger after market crashes.
Applying the GLS insight to return predictability regressions using ex ante

variance weights is not new. Singleton (2006) discusses the econometric basis
for this approach in Section 3.6.2. French, Schwert, and Stambaugh (1987)
and Campbell et al. (2018) use this procedure in the context of the risk-return
trade-off. The GARCH-in-mean framework estimated in Engle, Lilien, and
Robins (1987) and Glosten, Jagannathan, and Runkle (1993), the GARCH-
X framework in Brenner,Harjes, andKroner (1996), and theMIDAS frame-
work in Ghysels, Santa-Clara, and Valkanov (2005) are all structural
approaches to incorporating conditional variance in estimating the risk-
return trade-off. The stochastic volatility model in Johannes, Korteweg,
and Polson (2014) embeds the ex ante variance weighting idea in a structural
Bayesian learning framework. Finally, Westerlund and Narayan (2014)
derives the asymptotic properties of weighted least squares with potentially
misspecified ex ante variance measures. They also implement this approach
using structural variance models such as ARCH, use small-sample simula-
tions to illustrate its effectiveness, and apply it in-sample to the Goyal and
Welch (2008) predictors.

4 WLS-EV does not tend to downweight the crashes themselves, because ex ante volatility is often moderate
before a crash and spikes upward only after.

A Fresh Look at Return Predictability Using a More Efficient Estimator

5



Relative to this literature, my contribution is applying theGLS insight to a
large set of predictors and showing it changes OLS-based conclusions about
return predictability.Overall, significant evidence suggests that the equity risk
premium relates to traditional theory-based predictors with long sample
periods, such as the dividend yield and the Lettau and Ludvigson (2001)
“cay” variable, whereas there is no significant evidence for the predictability
afforded by more-recent predictors with weak theoretical grounding or short
sample periods, such as the Novy-Marx (2014) predictors, the president’s
party, or the variance risk premium.

1. Weighted Least Squares with Ex Ante Return Variance

The WLS-EV approach estimates the linear regression:

rtþ1 ¼ Xt � bþ �tþ1: (1)

The returns rtþ1 can be raw or log returns, can be overlapping or non-
overlapping and can be adjusted for the risk-free rate or unadjusted. There
can be multiple return predictors along with an optional constant in the Xt

vector.
I follow two steps to estimate b in Equation (1) using WLS-EV:

1. Estimate r2
t , the conditional variance of next-period unexpected

returns �tþ1.
2. Estimate b̂WLS�EV using

b̂WLS�EV ¼ argminb

XT
t¼1

rtþ1 � Xt � b
r̂t

� �2

; (2)

where �̂t is the square root of the estimate of �2t from step 1. This
estimator can be implemented using any OLS package by
regressing rtþ1

�̂t
on Xt

�̂t
. Note that, since any constant is in Xt, this

OLS implementation has no constant term.

Many different potential approaches can be taken from the literature for
estimating r2

t , the conditional variance of next-period returns, any of which
can be used to estimate WLS-EV. I describe my approach in Section 1.1.
Standard errors for WLS-EV are the same as OLS standard errors when

regressing the scaled returns rtþ1
r̂t

on the scaled constant and regressors Xt

r̂t
.

These standard errors should be heteroscedasticity and autocorrelation
consistent (HAC) to adjust for any remaining heteroscedasticity and auto-
correlation. I use the Newey and West (1987) procedure and a simulation
approach described in Appendix Appendix B. as two alternative HAC stan-
dard errors.
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A natural concern is that my standard errors are downward biased, be-
cause they do not adjust for estimation error in the first-stage variance pre-
diction regression. I address this concern by using heteroscedasticity
consistent standard errors in the second-stage return prediction regression,
which would not be necessary with perfectly specified variance measures.
With misspecified measures, heteroscedasticity remains in the second stage
or is even exacerbated. Fortunately, Wooldridge (2010), Westerlund and
Narayan (2014), and Romano andWolf (2017) show that the typical hetero-
scedasticity consistent (HC) standard errors remain asymptotically consistent
when applied to WLS, even in the presence of first-stage estimation errors.
Romano and Wolf (2017) therefore conclude “combining WLS with HC
standard errors allows for valid inference, even if the conditional variance
model is misspecified.”
My simulated standard errors address the possibility of estimation error in

my ex ante variancemeasuresmore directly by using simulations in which the
r̂2
t used forWLS-EVdiffer from true return variance, as detailed inAppendix

Appendix B.

1.1 Estimating r̂2
t

I use two different sampling frequencies, monthly for predictors with longer
sample periods and daily for the variance risk premium. My approach to
handling overlapping regressions, described in Section 1.2, assures I only
need variance forecasts for one sample period ahead even when the return
forecasting horizon spans multiple sampling periods. I therefore need a next-
month variance forecast r̂2

m and a next-day variance forecast r̂2
d.
5

For monthly sampling frequencies, the left-hand side of my first-stage
regressions is RVmþ1, the sum of squared daily log market returns in month
mþ 1. I use different combinations of RVm�s;m, realized variance in months
m – s throughm, as potential variance predictors on the right-hand side ofmy
first-stage regressions.
Panel A of Table 1 shows that past realized variance strongly predicts

future realized variance, with R2 between 25% and 40%, suggesting WLS-
EV could provide substantial efficiency gains relative to OLS. I use Column
(5) of panel A, which includes all potential predictors, to guide my choice of
specification for r̂2

m. Columns (5) and (6) show only prior-month and prior-
year realized variance are statistically significant predictors, and together they
provide nearly all the predictability afforded by the four lags of realized
variance. For this reason, I use the more parsimonious specification in

5 Throughout the paper I use subscript m to denote monthly observations, d for daily observations, and t for
generic time periods.
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Column (6) to produce fitted values for my monthly ex ante variance proxy,
which I refer to as RV r̂2

m hereafter:

RV r̂2
m � âm þ b̂m �RVm þ ĉm �RVm�11;m; (3)

where âm; b̂m, and ĉm are the estimated coefficients in a regression of RVmþ1
on a constant, RVm, and RVm�11;m. When using the full 1927–2015 sample,
these coefficients are those in Column (6) of panel A in Table 1.
I use daily sampling in my analysis of the variance risk premium as a

predictor, which is only available starting in 1990. Therefore, I can use intra-
day futures return variance, FutRVdþ1, instead of squared daily returns as

Table 1

Effectiveness of ex ante variance proxies

(1) (2) (3) (4) (5) (6)

A. Predicting next-month variance RVmþ1

Const (�102) 10.22*** 8.63*** 7.07*** 5.70** 4.76*** 4.73***
(2.38) (2.13) (2.05) (2.28) (1.72) (1.72)

RVm 0.60*** 0.46*** 0.46***
(0.09) (0.14) (0.10)

RVm�2;m 0.66*** –0.03
(0.09) (0.13)

RVm�5;m 0.72*** 0.08
(0.09) (0.10)

RVm�11;m 0.78*** 0.31** 0.36***
(0.12) (0.14) (0.11)

Adj. R2 (%) 35.9 30.2 28.2 26.3 39.3 39.4
!RV r̂2

m

B. Predicting next-day variance FutRVdþ1

Const (�102) 0.34*** 0.55*** 0.17 –0.59*** –0.29***
(0.08) (0.07) (0.13) (0.18) (0.07)

RVd� 20; d 0.80*** 0.40
(0.13) (0.27)

RVd� 251; d –0.05 –0.31***
(0.07) (0.09)

FutRVd 0.58*** 0.18*** 0.24***
(0.05) (0.05) (0.04)

FutRVd�20;d 0.86*** –0.49*
(0.12) (0.27)

ðVIX2
d)/252 1.04*** 1.03*** 0.67***

(0.12) (0.16) (0.07)
Adj. R2 (%) 37.3 34.0 36.7 46.2 50.1 47.1

!RV r̂2
d !VIXF r̂2

d

This table presents regressions of realized return variance on potential ex ante variance predictors. For each

monthm in panelA, the left-hand side isRVmþ1, the realized variance inmonthmþ 1, whereRVm ¼
P

d2m r2d,
and rd is the log dividend-inclusive excess return of the CRSP value-weighted index on day d. Predictors in panel

A are RVm�a;m ¼ 1
aþ1
Pa

s¼0 RVm�s. For each day d in panel B, the left-hand side is FutRVdþ1, the realized

variance on day d þ 1, where FutRVd ¼
P

i2d r
2
i;fut: and ri;fut: is the log return of the front-maturity S&P 500

futures contract in 5-minute interval i. Predictors in panel B are RVd�a;d ¼ 1
aþ1
Pa

s¼0 r
2
d�s,

FutRVd�a;d ¼ 1
aþ1
Pa

s¼0 FutRVd�s, and VIX2
d, the square of the VIX index on day d. The sample is 1,062

monthly observations from 1927 to 2015 in panel A and 6,552 daily observations from 1990 to 2015 in panel
B. Standard errors are in parentheses and are computed usingNewey andWest (1987) with 12 lags. *p < :1;
**p < :05; ***p < :01.
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the dependent variable inmy first-stage regression. To remain consistent with
the rest of the paper, my primary r̂2

d uses past-month and past-year realized
variances from daily returns as independent variables in the first-stage regres-
sion. I also consider an alternativemeasure using past FutRV and the VIX as
variance predictors.
Panel B of Table 1 shows the results of various possible first-stage regres-

sions for predictingFutRVdþ1 in a 1990–2015 sample. Column (1) shows that
the same predictors used for RV r̂2

m also strongly predict next-day next-day
variance, and with a similar 37.3% R2. Unsurprisingly, next-day variance is
primarily related to last-month variance rather than last-year variance. I use
fitted values fromColumn (1) asmymain daily ex ante variance proxy, which
I refer to as RV r̂2

d hereafter:

RV r̂2
d � âd þ b̂d �RVd�20;d þ ĉd �RVd�251;d; (4)

where âd; b̂d, and ĉd are the estimated coefficients in a regression of
FutRVdþ1 on a constant, RVd�20;d, and RVd�251;d, as presented in Column
(1) of panel B in Table 1.
Column (4) shows that the VIX index by itself is an extremely good pre-

dictor, achieving a higher R2 than any of the approaches based on past real-
ized variances alone. Column (5) indicates that only realized variance on day
d, FutRVd, incrementally and positively predicts next-day variance relative to
the VIX. For this reason, I use the more parsimonious specification in
Column (6) to produce fitted values formy alternative ex ante variance proxy,
which I refer to as VIXF r̂2

d hereafter:

VIXFr̂2
d ¼ b̂v � FutRVd þ ĉv �

VIX2
d

252
; (5)

where b̂v and ĉv are the estimated coefficients in a regression of FutRVdþ1 on

FutRVd and
VIX2

d

252 . I omit a constant from this first-stage regression to avoid

negative fitted values for next-day variance. I use VIXF r̂2
d to illustrate the

robustness of WLS-EV to alternative r̂2
d and the potential efficiency gains

resulting from better ex ante variance proxies.
Figure 1 plots RV r̂m for 1927–2015, and both RV r̂d and VIXF r̂d for

1990–2015, all of which are displayed as annualized standard deviations. Like
other conditional volatility estimates, RV r̂m is small and steady in normal
times but spikes upward during market downturns, particularly in 1929,
1987, and 2008. These episodes have conditional return volatility higher
than 50%, approximately 3 times the typical values, which are between
15% and 20%. The more-recent daily sample shows similar patterns but
with even more extreme values during the 2008 crisis. They also show that
RV r̂d and VIXF r̂d are highly correlated (83%, result untabulted), with
VIXF r̂d being slightly more volatile because it explains more variation in
FutRVdþ1.
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While my ex ante variance proxies are effective empirically, other proxies
may predict realized variance as well or even better. As discussed above, any
of these can be used with WLS-EV as long as they are constructed from ex
ante information. Fortunately, these proxies are strongly correlated with
each other, and in untabulated tests, I find my results are not sensitive to
using other predictors from Table 1, MIDAS estimates following Ghysels,
Santa-Clara, and Valkanov (2005), or RVm without a first-stage regression.

1.2 Overlapping returns

To maximize power in relatively short samples, many return predictability
studies use sampling frequencies shorter than their forecast horizon h,

Figure 1

Conditional volatility measures

The first plot presents RV r̂m, the estimates of the volatility of next-month equitymarket returns conditional on
past realized variance, estimated using regressions described in Section 1. The second plot presents RV r̂d and
VIXF r̂d, the estimates of the volatility of next-day equity market returns conditional on past realized variance,
and the VIX and past intraday futures variance, respectively. All volatilities are displayed as an annualized
percentage. Themonthly sample consists of 1,062 observations from 1927 to 2015 and the daily sample of 6,552
observations from 1990 to 2015.
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resulting in overlapping returns. The standard approach in this case is to
estimate b̂ using OLS and adjust the standard errors using the procedures
suggested in Newey and West (1987) or Hodrick (1992).
TheWLS-EV equivalent of the standard approach would be to estimate b̂

using least squares weighted by conditional next-h period variance to account
for heteroscedasticity, and standard errors from Newey and West (1987) or
simulations to account for overlap-driven autocorrelation. This approach
suffers from twoproblems. The first is that conditional next-hperiod variance
measures do not predict realized variance as well as conditional next-period
variance measures, reducing WLS-EV’s efficiency gains. The second is that
the small-sample bias in Newey and West (1987) standard errors for over-
lapping return regressions, documented in Hodrick (1992) and Ang and
Bekaert (2006), applies here and cannot be addressed using Hodrick (1992)
standard errors because they have no natural translation to weighted regres-
sions. In Online Appendix E, I use simulations to illustrate these shortcom-
ings and show that the paper’s conclusions are nevertheless unchanged when
using overlapping regressions with next-h period variance weights.
To applyWLS-EVwith overlapping observationswhile avoiding the prob-

lems associated with next-h period ex ante variances, I instead rely on the
insight in Hodrick (1992) that overlapping return predictability regressions
can be mapped to equivalent (after scaling) nonoverlapping regressions of
rtþ1 on �Xt �

Ph�1
s¼0 Xt, as detailed in Appendix A.1.

I use this insight to estimate b̂ in overlapping samples using OLS orWLS-
EV as follows:

1. Estimate the nonoverlapping regression rtþ1 ¼ ð
Ph�1

s¼0 Xt�sÞ � bþ �tþ1
using either OLS or WLS-EV. Use Newey and West (1987) standard
errors to adjust for remaining heteroscedasticity or autocorrelation,
for example, because of omitted predictor variables.

2. Scale the resultant coefficients and standard errors by
ETðX0tXtÞ�1ETð �Xt

0 �XtÞ, which simplifies to VarTð�xtÞ
VarTðxtÞ when Xt has a con-

stant and univariate predictor xt.

Appendix A.1 shows this approach produces OLS estimates approximately
equal to those from a standard overlapping regression in finite samples, and
identical asymptotically.

2. Traditional Predictors

My first application of theWLS-EV estimator is to reassess the return predict-
ability afforded by the 16 variables studied inGoyal andWelch (2008).Overall,
I find the WLS-EV evidence for return predictability is substantially stronger
than the insignificant OLS evidence documented in Goyal and Welch (2008).
As summarized by panel A of Table 2, the 16 predictors Goyal andWelch

(2008) and I study are the log dividend-to-current-price ratio (dp), log
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Table 2

In-sample return predictability

A. List of Goyal and Welch (2008) predictors

Name Summary First paper(s) to document predictability

dp log dividend-to-current-price ratio Rozeff 1984; Shiller, Fischer, and Friedman 1984
dy log dividend-to-lagged-price ratio Rozeff 1984; Shiller, Fischer, and Friedman 1984
ep log earnings-to-price ratio Shiller, Fischer, and Friedman 1984
de log dividend-to-earnings ratio Lamont 1998
r̂2
m Conditional variance French, Schwert, and Stambaugh 1987; Campbell 1987

tbl Treasury-bill yield Fama and Schwert 1977
lty Treasury bond yield Campbell 1987; Fama and French 1989
ltr Treasury bond return Campbell 1987; Fama and French 1989
tms Term spread Campbell 1987; Fama and French 1989
dfy Default spread Keim and Stambaugh 1986
infl Inflation rate Lintner 1975
bm log book-to-market ratio Kothari and Shanken 1997; Pontiff and Schall 1998
csp Cross-sectional beta premium Polk, Thompson, and Vuolteenaho 2006
ntis Net equity expansion Boudoukh et al. 2007
lpy log payout yield Boudoukh et al. 2007
cay Consumption-to-wealth ratio Lettau and Ludvigson 2001

B. Predicting next-month returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: dp dy ep de

Stambaugh b̂adj 0.15 0.20 0.64 0.60** 0.56 0.51 –0.26 –0.06
Unadjusted b̂ 0.54 0.59 0.68 0.63 0.80 0.75 –0.23 –0.02
SE (Asy) (0.48) (0.33) (0.50) (0.33) (0.48) (0.37) (0.84) (0.57)
p-value (Asy %) 74.9 54.3 19.6 7.3 25.0 16.9 75.4 92.2
SE (Sim) (0.43) (0.29) (0.42) (0.29) (0.43) (0.32) (0.74) (0.49)
p-value (Sim %) 71.9 48.8 13.0 4.1 19.5 11.4 72.1 91.0

Predictor: RV r̂2
m tbl lty ltr

Stambaugh b̂adj –0.71 –0.60 –0.09* –0.12*** –0.08 –0.10** 0.12 0.18***
Unadjusted b̂ –0.69 –0.58 –0.09 –0.12 –0.07 –0.09 0.12 0.18
SE (Asy) (1.18) (1.03) (0.05) (0.05) (0.06) (0.05) (0.06) (0.06)
p-value (Asy %) 54.7 55.7 7.6 1.5 18.7 5.9 3.5 0.2
SE (Sim) (1.19) (0.94) (0.05) (0.04) (0.05) (0.04) (0.07) (0.05)
p-value (Sim %) 55.2 52.2 5.6 0.3 12.2 1.8 11.9 0.1

Predictor: tms dfy infl bm

Stambaugh b̂adj 0.20 0.19** 0.13 –0.01 –0.36 –1.00*** 1.03 0.19
Unadjusted b̂ 0.20 0.18 0.16 0.03 –0.36 –1.00 1.42 0.58
SE (Asy) (0.12) (0.11) (0.56) (0.39) (0.44) (0.29) (0.86) (0.60)
p-value (Asy %) 10.9 8.7 81.7 98.6 41.2 0.1 22.7 74.6
SE (Sim) (0.13) (0.09) (0.43) (0.27) (0.45) (0.29) (0.86) (0.52)
p-value (Sim %) 11.6 4.7 76.8 98.0 41.4 0.1 23.3 70.8

Predictor: csp ntis lpy cay

Stambaugh b̂adj 2.12*** 1.85*** –0.16 –0.12* 1.65* 1.56** 0.19** 0.22***
Unadjusted b̂ 2.14 1.87 –0.16 –0.12 1.78 1.70 0.20 0.23
SE (Asy) (0.68) (0.66) (0.09) (0.08) (0.85) (0.76) (0.10) (0.09)
p-value (Asy %) 0.2 0.5 8.1 12.1 5.1 3.9 5.6 1.1
SE (Sim) (0.69) (0.55) (0.10) (0.07) (0.96) (0.71) (0.08) (0.07)
p-value (Sim %) 0.2 0.1 10.1 8.8 8.5 2.7 2.3 0.2
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Summary statistics

# significant (Sim)

10% 5% 1% Mean WLS SE ðSimÞ
OLS SE ðSimÞ

� �
: # (WLS p-val (Sim) < OLS):

OLS 4 2 1 73.2 13
WLS-EV 10 9 5

C. Predicting next-year returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: dp dy ep de

Stambaugh b̂adj 3.17 3.19 7.60 7.51** 6.54 6.43* –0.39 –0.83
Unadjusted b̂ 7.69 7.71 8.01 7.91 9.30 9.19 0.08 –0.35
SE (Asy) (5.37) (4.01) (5.27) (4.00) (4.91) (3.99) (9.03) (5.97)
p-value (Asy %) 55.5 42.6 14.9 6.1 18.3 10.7 96.5 88.9
SE (Sim) (5.08) (3.42) (5.05) (3.43) (4.32) (3.52) (7.84) (5.34)
p-value (Sim %) 53.3 35.1 13.0 2.8 13.0 6.7 96.0 87.8

Predictor: RV r̂2
m tbl lty ltr

Stambaugh b̂adj 0.22 –5.72 –0.87 –1.05** –0.46 –0.73 0.69*** 0.63***
Unadjusted b̂ 0.42 –5.52 –0.82 –1.00 –0.35 –0.61 0.68 0.62
SE (Asy) (9.39) (8.04) (0.68) (0.62) (0.73) (0.66) (0.19) (0.17)
p-value (Asy %) 98.1 47.7 20.0 9.2 52.3 26.6 0.0 0.0
SE (Sim) (9.30) (6.87) (0.57) (0.48) (0.58) (0.50) (0.20) (0.17)
p-value (Sim %) 98.1 40.5 12.7 2.9 42.7 14.6 0.0 0.0

Predictor: tms dfy infl bm

Stambaugh b̂adj 3.03** 2.41** 2.00 –0.09 –1.78 –5.03** 16.34* 6.80
Unadjusted b̂ 3.02 2.40 2.38 0.29 –1.78 –5.03 20.70 11.16
SE (Asy) (1.36) (1.17) (4.81) (3.87) (5.44) (3.55) (8.96) (7.10)
p-value (Asy %) 2.6 4.0 67.8 98.1 74.3 15.7 6.8 33.8
SE (Sim) (1.38) (1.03) (4.77) (2.84) (3.97) (2.45) (9.67) (6.01)
p-value (Sim %) 2.9 1.9 67.4 97.4 65.5 4.0 9.1 25.8

Predictor: csp ntis lpy cay

Stambaugh b̂adj 5.79 3.29 –2.52** –1.66** 28.05*** 22.65*** 1.90* 2.05**
Unadjusted b̂ 5.98 3.47 –2.50 –1.64 29.61 24.20 1.96 2.11
SE (Asy) (7.45) (7.65) (1.08) (0.92) (9.22) (9.22) (1.14) (1.01)
p-value (Asy %) 43.7 66.8 2.0 7.0 0.2 1.4 9.7 4.3
SE (Sim) (7.40) (6.24) (1.08) (0.80) (10.33) (7.80) (1.04) (0.87)
p-value (Sim %) 43.5 60.0 1.9 3.8 0.7 0.4 6.6 1.8

Summary statistics

# significant (Sim.)

10% 5% 1% Mean WLS SE ðSimÞ
OLS SE ðSimÞ

� �
: # (WLS p-val (Sim) < OLS):

OLS 6 4 2 74.4 12
WLS-EV 9 8 2
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dividend-to-lagged-price ratio (dy), log earnings-to-price (ep) ratio, log
dividend-to-earnings (de) ratio, conditional variance of returns (RV r̂2

m),
Treasury-bill yield (tbl), long-term Treasury bond yield (lty), return of
long-term bonds (ltr), term spread (tms), default yield spread (dfy), inflation
(infl), log book-to-market (bm) ratio, cross-sectional beta premium (csp), net
equity expansion (ntis), log net payout yield (lpy), and consumption-to-
wealth ratio (cay). Panel A of Table 2 references the original papers docu-
menting each variable’s relation with future market returns.
To improve the readability of the coefficients, I divide dp, dy, ep, de,

bm, and lpy by 100. I compute RV r̂2
m as described above and retrieve lpy

from Michael Roberts’ website, cay from Martin Lettau’s website, and
the remaining predictors from Amit Goyal’s website. Detailed defini-
tions of the predictors are in Boudoukh et al. (2007) for lpy, Lettau
and Ludvigson (2001) for cay, and Goyal and Welch (2008) for the
remaining predictors.

2.1 In-sample predictability

For each of the 16 predictors, I estimate univariate predictability regressions
of the form:

rmþ1;mþh ¼ aþ b � xm þ �mþ1;mþh; (6)

where rmþ1;mþh is the log excess return of the CRSP value-weighted index in
months m þ 1 through m þ h. I use both OLS and WLS-EV to estimate
the coefficients a and b. I assess next-month (h¼ 1) and next-year (h¼ 12)
predictability and adjust for the overlap when h¼ 12 using the procedure
in Section 1.2. I also compute simulated standard errors and adjust for
the Stambaugh (1999) bias using procedures described in Appendix
Appendix B.
The results of my in-sample tests are in Table 2, beginning with a 1-month

forecast horizon (h ¼ 1) in panel B. The WLS-EV estimates have simulated
standard errors smaller than their OLS counterparts by an average of 26.8%,
indicating WLS-EV results in substantial efficiency gains relative to OLS.

This table presents estimates of in-sample return predictability regressions of the form:

rmþ1;mþh ¼ aþ b � xm þ �mþh;
where rmþ1;mþh is the log dividend-inclusive excess return of theCRSP value-weighted index frommonthsmþ 1
through m þ h, and xm is a candidate return predictor. The predictors xm are summarized in panel A. The
forecast horizons are h¼ 1 month in panel B and h¼ 12 months in panel C. To improve the readability of the
coefficients, I divide dp, ep, de, bm, and lpy by 100. For each predictor, I estimate b using OLS and WLS-EV,
detailed in Section 1, using RV r̂2

m. I also adjust b for the Stambaugh bias using a simulation procedure. I
compute asymptotic (Asy) errors and p-values for the bias-adjusted coefficients by mapping to equivalent
nonoverlapping regressions, as described in Section 1, and then using Newey and West (1987) with 12 lags
and the simulated (Sim) standard errors and p-values, using the procedure described in Appendix Appendix B.
The sample is 1,062 monthly observations from 1927 to 2015. *p < :1; **p < :05; ***p < :01.
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Furthermore, theWLS-EVpoint estimates are consistent with theOLS point
estimates in most cases, and substantially larger for tbl, lty, ltr, and infl.
Combining these features strengthens the overall in-sample evidence of re-
turn predictability, with WLS-EV p-values smaller than OLS p-values for 13
of the 16 predictors. Using 10%, 5%, and 1% critical values, WLS-EV
estimates are statistically significant for 10, 9, and 5 of the predictors,
respectively, compared to only 4, 2, and 1 for OLS.
I assess the predictive power of these 16 variables for next-year returns

(h ¼ 12) in panel C of Table 2. The results are consistent with the next-
month return results in panel A, indicating stronger in-sample evidence of
return predictability. The WLS-EV approach yields 25.6% smaller simu-
lated standard errors and largely unchanged point estimates, making the
WLS-EV evidence for return predictability stronger than the OLS evi-
dence for 12 of the 16 predictors. Using 10%, 5%, and 1% critical values,
WLS-EV estimates are statistically significant for 9, 8, and 2 predictors,
respectively, compared to 6, 4, and 2 for OLS.

2.2 Out-of-sample predictability

The evidence supporting return predictability in Table 2 has two potential
concerns. The first is data mining: the predictive variables are not chosen at
random but instead are selected by the literature, among many potential
predictors, based on their in-sample OLS statistical significance. The second
concern is a bias in the standard errors not captured by the asymptotic HAC
or simulated standard errors I use to test the no-predictability null
hypothesis.
To address these concerns, I examine the out-of-sample predictive power

of these regressors using both OLS andWLS-EV. As discussed in Goyal and
Welch (2008), out-of-sample tests provide an additional falsifiable implica-
tion of the no-predictability null hypothesis that was not itself the target of
data mining in most return predictability research. While some debate (e.g.,
Cochrane 2008 or Campbell and Thompson 2008) swirls about the power of
out-of-sample tests for rejecting the null, making a failure to reject difficult to
interpret, out-of-sample success provides strong evidence of predictability,
because it cannot be explained by in-sample data mining or biased standard
errors.
In addition to providing researchers with an alternative test of the no-

predictability null, out-of-sample predictability provides a simple measure
of the practical value a predictor offers to investors. As discussed in
Campbell and Thompson (2008), Johannes, Korteweg, and Polson (2014),
and elsewhere, investors may use more sophisticated techniques in forming
expectations about future market returns and their portfolios. Nevertheless,
out-of-sampleR2 provides a simple indicator of which predictors would have
benefited investors if used in “real-time” over the past century.
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I compute the OOSR2 for each predictor using a procedure very similar to
the one in Goyal and Welch (2008). Specifically, for each month s in my
1927–2015 sample,6 starting 20 years after the first month the predictor is
available, I compute the conditional expected future return over the next
h months, Esðrsþ1;sþhjxsÞ as follows.

1. Estimate coefficients âs and b̂s in the regression:

rmþ1;mþh ¼ as þ bs � xm þ �mþ1;mþh; (7)

using OLS or WLS-EV, and only data available as of s, that is,
m � s� h. To maximize power, I use overlapping monthly regres-
sions, instead of the annual regressions used in Goyal and Welch
(2008). For WLS-EV, I reestimate the first-stage variance prediction
regression for each s:

RVmþ1 ¼ cs þ ds � RVm þ es � RVm�11;m þ cmþ1; (8)

using only data available as of s.
2. Use estimated coefficients and current predictor values to compute:

Esðrsþ1;sþhjxsÞ � âs þ b̂sxs: (9)

As a benchmark, I also compute an out-of-sample return prediction ignoring
xs:

Esðrsþ1;sþhÞ � l̂s; (10)

where l̂s is the coefficient in a regression of future returns on only a constant
(Equation (7) restricted so bs ¼ 0).
Given time series of out-of-sample return predictions Esðrsþ1;sþhjxsÞ and

Esðrsþ1;sþhÞ, I compute the out-of-sample R2 and adjusted R2 like in Goyal
and Welch (2008):

R2 � 1�MSEA

MSEN
; Adj:R2 � R2 � ð1�R2Þ K

T�K� 1
; (11)

MSEA �
1

T

XT
s¼1

eAðs; xÞ2 MSEN �
1

T

XT
s¼1

eNðsÞ2 (12)

eAðs; xÞ � rsþ1;sþh � Esðrsþ1;sþhjxsÞ eNðsÞ � rsþ1;sþh � Esðrsþ1;sþhÞ;
(13)

6 Unlike that ofGoyal andWelch (2008),my sample starts in 1927, because I require daily return data to compute
the RV r̂2

m, and ends in 2015, rather than 2005. The exceptions are csp (available 1937–2002), lpy (available
1927–2010), and caya (the ex ante version of cay, available 1952–2013).
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Table 3

Out-of-sample return predictability

A. Predicting next-month returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: dp dy ep de

OOS R2 (%) –0.01 0.13* –0.28 0.27** –0.94 –0.11 –1.08 –1.30
CT R2 (%) 0.16** 0.33** 0.19** 0.47** –0.16 0.25** 0.00 –0.16
PTV R2 (%) 0.25** 0.24** 0.41** 0.38** 0.49** 0.33** –0.23 –0.28

Predictor: RVt� 11; t tbl lty ltr

OOS R2 (%) –0.11 –1.24 –0.05* –0.42 –0.86 –1.23 –0.46 0.25**
CT R2 (%) 0.00 0.00 0.20** 0.28** 0.18** 0.29** 0.28** 0.13*
PTV R2 (%) –0.05 –0.15 0.59*** 0.64*** 0.46** 0.55*** 0.19* 0.57**

Predictor: tms dfy infl bm

OOS R2 0.21** 0.37** –0.16 –0.42 0.15 0.59** –1.36 –0.04
CT R2 (%) 0.21** 0.45*** –0.15 –0.03 0.17* 0.70*** –0.82 –0.04
PTV R2 (%) 0.40** 0.46*** –0.15 –0.06 0.10 0.12* 0.04* 0.11*

Predictor: csp ntis lpy caya

OOS R2 (%) –0.49 –0.04 –0.71 –0.47 –0.62 –0.08 0.15* 0.29**
CT R2 (%) 0.54** 0.42** –0.70 –0.47 0.02 0.24** –0.06 0.09*
PTV R2 (%) 0.60** 0.56** 0.02 –0.02 0.24** 0.32** 0.50*** 0.53***

Summary statistics

IS R2 OOS R2 CT R2 PTV R2

# sig. # sig. # sig.
Mean
(%)

Mean
(%)

#>0 10% 5% Mean
(%)

#>0 10% 5% Mean
(%)

#>0 10% 5%

OLS 0.34 –0.41 3 3 1 0.00 9 8 7 0.24 13 11 9
WLS-EV 0.24 –0.21 6 6 5 0.18 11 11 9 0.27 12 12 10
Diff –0.09 0.20 11 4 0 0.18 12 2 2 0.03 9 0 0

B. Predicting next-year returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: dp dy ep de

OOS R2 –4.38 0.69* –5.75 0.57* –8.77 –0.90 –3.90 –7.66
CT R2 1.88** 4.66** 2.18** 4.73** 1.55* 4.15** –0.34 –0.82
PTV R2 2.62** 4.74** 2.71** 4.87** 4.34** 4.49** –2.83 –3.28

Predictor: RVt� 11; t tbl lty ltr

OOS R2 –0.92 –8.85 –12.46 –11.89 –16.52 –20.32 0.81*** 0.81***
CT R2 –0.15 0.00 –1.11 2.51** 0.38* 0.95** 1.16*** 1.06***
PTV R2 –0.92 –1.41 2.40** 3.83** –0.73 0.38** 0.90** 1.16***

Predictor: tms dfy infl bm

OOS R2 –0.93 3.04** –3.23 –1.17 –0.45 1.60** –19.55 –2.35
CT R2 0.43* 2.83** –2.34 –0.19 0.04 1.89** –7.88 –1.20
PTV R2 3.86*** 4.60*** –2.40 –0.78 –0.34 1.22** –0.61 1.73**

(continued)
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whereT is the number of observations in the post-training sample period and
K is the number of regressors (including the constant). Following Goyal and
Welch (2008), I focus my analysis on in-sample and out-of-sample adjusted
R2 (OOS R2 hereafter).
I useOOSR2 as both ameasure of economic value to investors and as a test

statistic for the no-predictability null hypothesis. I compute the small-sample
distribution of OOS R2 under the null hypothesis using the same simulation
procedure I use for in-sample standard errors, as described in Appendix
Appendix B. The p-values in Table 3 are the fraction of simulated samples
with larger OOS R2 than I find in the observed sample.
Table 3 presents the OOS R2 afforded by the 16 traditional predictors for

next-month returns in panel A and next-year returns in panel B. The OLS
results echo the conclusion in Goyal and Welch (2008) that these predictors,
when combined with OLS, do not produce significant OOS R2. Only one
predictor has OOS R2 with p-value below 5% for next-month returns (tms)
and for next-year returns (ltr).
Table 3 shows the out-of-sample performance ofWLS-EV is substantially

better than OLS. WLS-EV OOS R2 are higher than their OLS counterparts

Table 3

Continued

B. Predicting next-year returns

Predictor: csp ntis lpy caya

OOS R2 –3.76 –4.67 –14.97 –7.54 –17.99 0.71 1.45* 3.37**
CT R2 –1.83 –2.54 –14.99 –7.54 2.17* 4.93** 1.14* 2.34**
PTV R2 –3.74 –4.67 0.13 –0.24 4.52** 5.61** 6.55*** 6.88***

Summary statistics

IS R2 OOS R2 CT R2 PTV R2

# sig. # sig. # sig.

Mean
(%)

Mean
(%)

#>0 10% 5% Mean
(%)

#>0 10% 5% Mean
(%)

#>0 10% 5%

OLS 2.96 –6.96 2 2 1 –1.11 9 8 3 1.03 9 8 8
WLS-EV 2.11 –3.41 7 6 4 1.11 10 10 10 1.82 11 11 11
Diff –0.84 3.55 12 5 1 2.22 13 2 1 0.79 12 1 0

This table presents statistics on the out-of-sample predictability afforded by 16 candidate predictors from
Table 2. In panel A, I predict next-month log dividend-inclusive excess returns of the CRSP value-weighted
index. In panel B, the forecast horizon is 1 year. The predictors are identical to those in Table 2 with two
exceptions: since cay and RV r̂2

m require the full-sample of data to construct, I replace them with a rolling
estimate of cay, caya, and past realized variance RVm�11;m. For each predictor, I compute out-of-sample return
forecasts starting 20 years after the sample begins, using both OLS and WLS-EV with out-of-sample variance
forecasts, as detailed in Section 1. Given these out-of-sample forecasts, I compute the out-of-sample R2 (OOS
R2) using the procedure described in Section 2. I also compute the out-of-sample R2 using the Campbell and
Thompson (2008) (CT R2) and Pettenuzzo, Timmermann, and Valkanov (2014) (PTV R2) approaches, de-
scribed in Section 2. I compute p-values using the simulations described in Appendix Appendix B. *p < :1;
**p < :05; ***p < :01. Both panels use 1,062 monthly observations from 1927 to 2015.
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for 11 of the predictors using next-month and 12 for next-year returns. The
mean OOSR2 across predictors is�0.21% and�3.41% for next-month and
next-year returns forWLS-EV, compared to�0.41% and�6.96% for OLS.
These increases are economically large relative to the average in-sample OLS
R2 of 0.34% and 2.96%, respectively.
Finally, and most importantly, four predictors offer positive OOSR2 with

p-values below 5% using WLS-EV for both next-month returns and next-
year returns (ltr, tms, infl, and caya). Two predictors, dp and dy, have p-val-
ues below 10% for both horizons. As was the case for in-sample tests pre-
sented in Table 2, out-of-sample tests produce much stronger evidence for
return predictability by these variables when usingWLS-EV instead of OLS.
To illustrate the source of the out-of-sample performance gains, I examine

the dividend-price ratio (dp) inmore detail. Figure 2 shows the evolution of b̂s

over the post-training period for bothOLSandWLS-EVestimates. For next-
year returns, although the full-sample estimates are very similar for OLS and
WLS-EV (both around 7.7, as presented in panel B of Table 2), the rolling
WLS-EV estimates are closer to the full-sample estimate early in the sample
andmore stable over time, both reflecting greater efficiency.OnlineAppendix
A shows that the rolling coefficients for the other predictors follow a similar
pattern, with WLS-EV rolling b̂s closer to full-sample b̂T than their OLS

Figure 2

Rolling estimates of the predictability coefficient for the dp ratio

This figure presents coefficients from rolling regressions of next-year returns on the log dividend-to-price (dp)
ratio. Specifically, for each date s in my monthly sample following a 20-year training period, using only data
available at time s, that is, m � s� 12, I estimate the regression:

rmþ1;mþ12¼aþb�dpmþ�mþ1;mþh;

where rmþ1;mþ12 is the log dividend-inclusive excess return of the CRSP value-weighted index over the 12
months starting with m þ 1, and dpm is the log dividend-to-price ratio in month m. For each s, I compute
point estimates âs and b̂s using OLS andWLS-EV, detailed in Section 1. I plot the resultant OLS andWLS-EV
estimates b̂s for each month from 1947 to 2015.

A Fresh Look at Return Predictability Using a More Efficient Estimator

19

https://academic.oup.com/raps/article-lookup/doi/10.1093/rapstu/ray010#supplementary-data


counterparts. This pattern results in WLS-EV OOS R2 closer to the IS R2

than OLS OOS R2.
Despite the improved OOS performance of WLS-EV relative to OLS,

many predictors that are significant in-sample still have negative or insignif-
icant OOS R2 when using WLS-EV. Campbell and Thompson (2008) pro-
vides a method for improving the OOS performance of these predictors.
Specifically, Campbell and Thompson (2008) suggests two economically mo-
tivated restrictions on the b̂s and Esðrsþ1;sþhjxsÞ:

1. For each predictor, economic theory suggests the correct sign of b. If
b̂s has the economically incorrect sign, set b̂s ¼ 0 and
Esðrsþ1;sþhjxsÞ ¼ Esðrsþ1;sþhÞ.

2. The expected equity risk premium Esðrsþ1;sþhjxsÞ should always be
positive. If it is not, use Esðrsþ1;sþhjxsÞ ¼ 0.

I apply these restrictions for each of the return predictors, using both OLS
and WLS-EV, and compute the resultant adjusted OOS R2, as defined in
Equation (12).
Table 3 shows OOS R2 using the Campbell and Thompson (2008) ap-

proach (CT R2) for each predictor. For both OLS and WLS-EV, CT R2

are substantially higher than OOS R2, with 9 (9) predictors offering positive
CT R2 for next-month (next-year) returns using OLS. While the Campbell
and Thompson (2008) approach improves the economic magnitude of out-
of-sample performance, this does not necessarily imply it more-strongly
rejects the no predictability null because CT R2 are larger even under the
null,meaning they have higher simulation-based critical values than standard
OOSR2.Nevertheless, I find thatCTR2 usingOLSare statistically significant
for 7 (3) predictors of next-month (next-year) returns.
WLS-EV still outperforms OLS when paired with the Campbell and

Thompson (2008) restrictions. WLS-EV CT R2 are higher than OLS CT
R2 for 12 (13) predictors of the next-month (next-year), and the mean CT
R2 is 0.18% (1.11%) for next-month (next-year) returns, compared to 0.00%
(�1.11%) for OLS. The statistical evidence of predictability is also much
stronger using WLS-EV instead of OLS alongside Campbell and
Thompson (2008), with 9 (10) predictors having p-values below 5% for
next-month (next-year) returns.
Another method for improving out-of-sample performance is to use the

economic restrictions in Pettenuzzo, Timmermann, and Valkanov (2014),
which require conditional annualized Sharpe ratios for the market be
bounded between zero and one. Therefore, I estimate coefficients âs and
b̂s, using the regression in Equation (7) constrained so that
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0 � âs þ b̂sxm
r̂m

� 1 8m � s� h: (14)

This differs from the Campbell and Thompson (2008) approach by requiring
the conditional risk premium is positive for allm � s� h, rather than just s,
and adds an upper bound on the conditional Sharpe ratio.
Table 3 shows that, as demonstrated in Pettenuzzo, Timmermann, and

Valkanov (2014), these economic restrictions result in out-of-sampleR2 (PTV
R2) substantially larger than even the CT R2. Because the Pettenuzzo,
Timmermann, andValkanov (2014) approach already dampens the influence
of extreme observations onOLSpoint estimates, the additional improvement
afforded by WLS-EV is smaller for PTV R2 than for OOS R2 or CT R2.
Nevertheless, usingWLS-EV instead ofOLS results in slightly higher average
PTV R2 and more predictors with positive and significant PTV R2.
As an alternative measure of out-of-sample performance, I also compute

certainty equivalents (CEs) for an investor optimizing their portfolio using
estimated conditional means and variances, an approach used in Campbell
and Thompson (2008) and Johannes, Korteweg, and Polson (2014).
Compared to OOS R2, CEs have the advantage of a natural economic inter-
pretation but the disadvantage of being dependent on the investor’s utility
function.OnlineAppendix B shows thatCEs follow the same pattern asOOS
R2, with WLS-EV offering a 20- to 50-bp increase in per-year CE over OLS.

2.3 Discussion

Goyal and Welch (2008) comes to a pessimistic conclusion about return
predictability: “despite extensive search, we were unsuccessful in identifying
anymodels on annual or shorter frequency that systematically had both good
IS and OOS performance” (Goyal and Welch 2008, p. 1504).
I show that using my more efficient estimator results in a more optimistic

conclusion about return predictability. While my results echo Goyal and
Welch (2008) in that none of the predictors systematically and significantly
predict returns both in- and out-of-sample when using OLS, I show that four
predictors meet the Goyal and Welch (2008) criteria when using WLS-EV:
long-term bond return (ltr), term spread (tms), inflation (infl), and
consumption-to-wealth ratio (cay).7 Three more predictors meet the criteria
when OOS performance uses WLS-EV with the Campbell and Thompson
(2008) economic restrictions: log dividend-to-lagged price ratio (dy),
Treasury-bill rate (tbl), and log payout yield (lpy).
For three of the predictors not meeting the stringent Goyal and Welch

(2008) criteria—the dividend-to-price (dp) ratio, earnings-to-price (ep) ratio,
and long-term bond yields (lty)—optimism is merited, because WLS-EV

7 I define the Goyal andWelch (2008) criteria as having simulated p-values less than 5% for both in-sample and
out-of-sample tests using both next-month and next-year returns.

A Fresh Look at Return Predictability Using a More Efficient Estimator

21

https://academic.oup.com/raps/article-lookup/doi/10.1093/rapstu/ray010#supplementary-data


evidence is stronger thanOLS evidence, albeit being inconsistent across spec-
ifications. Finally, the remaining six predictors have no convincing evidence
of predictability based on WLS-EV or OLS estimates: the dividend-to-
earnings (de) ratio, conditional variance (RV r̂2

m), default spread (dfy),
book-to-market (bm) ratio, cross-sectional beta premium (csp), and net eq-
uity issuance (ntis).
The stronger evidence for predictability when using my more-efficient es-

timator is consistent with returns being predictable in the time series, as
suggested by modern asset pricing and macro-theory models, but OLS esti-
mates being inefficiently noisy. When using the more-efficient WLS-EV esti-
mator, in-sample point estimates resemble OLS estimates in most cases,
remaining economically substantial. However, weighting observations by
ex ante volatility improves efficiency, reducing simulated standard errors
by an average of 27% for next-month returns and 26% for next-year returns
(see summary statistics in Table 2). This added efficiency allows more-
frequent rejection of the no-predictability null using the same data, and
also improves out-of-sample performance by reducing the estimation error
embedded in out-of-sample return forecasts.
Alternative approaches to improving the out-of-sample performance of

return predictors (e.g., those in Campbell and Thompson 2008; Lettau
and Van Nieuwerburgh 2008; Johannes, Korteweg, and Polson 2014;
Pettenuzzo, Timmermann, and Valkanov 2014) often improve out-of-
sample performance as much or more than using WLS-EV. As a methodol-
ogy for improving out-of-sample performance, using WLS-EV has the ad-
vantage of being aminimal extension to OLS, making it easier to understand
and implement, and the disadvantage of not being designed tomaximize out-
of-sample performance. Instead, WLS-EV is designed to provide a more
efficient in-sample test of the “no time-invariant linear predictability” null
hypothesis tested by OLS. Alternative out-of-sample approaches either do
not address in-sample estimation or test a different null hypothesis, preclud-
ing the type of in-sample inference that is the focus of this paper andmuch of
the literature.

3. The Variance Risk Premium as a Predictor

3.1 Methodology

As a second application of WLS-EV, I revisit the empirical relation between
future returns and the variance risk premium proxies in Bollerslev, Tauchen,
and Zhou (2009) and Drechsler and Yaron (2011), BTZ and DY hereafter,
and show it is not robust toWLS-EV. BTZ and DY show that the difference
between VIX2 and an estimate of statistical-measure variance positively
predicts equity returns. Both papers motivate this result by modeling equity
and variance risk premiums in a setting with stochastic volatility and
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volatility-of-volatility, resulting in a positive correlation between equity and
variance risk premiums.
BTZ and DY use slightly different empirical proxies for the variance risk

premium, both of which I replicate. The BTZ proxy is

BTZ ^VRPd � VIX2
d � IndRVd�20;d; (15)

where VIXd is the CBOEVIX index on day d and IndRVd�20;d is the realized
variance of S&P 500 index returns over the 21 trading days ending on day d. I
follow BTZ and compute IndRV from realized 5-minute log S&P 500 index
returns and scale both VIX2

d and IndRVd�20;d to monthly percentages
squared. The DY proxy for the variance risk premium is

DY ^VRPd � VIX2
d � ÊdðFutRVdþ1;dþ21Þ; (16)

where FutRVdþ1;dþ21 is the sum of squared 5-minute log S&P 500 futures
returns in the 21 trading days following d. I followDYanduse the fitted value
from a full-sample time-series regression of FutRVdþ1;dþ21 on IndRVt�20;d
and VIX2

d as ÊdðFutRVdþ1;dþ21Þ.
Unlike BTZ and DY, I use a daily sampling frequency for ^VRPd rather

than monthly. The reason is the meaningful and observable day-to-day var-
iation in ^VRPd, with the half-lives of BTZ and DYVRPd being only 4.6 and
5.2, respectively. Overlapping regressions with daily sampling use this varia-
tion to maximize power in a relatively short 1990–2015 sample period. 5
repeats my analysis with a monthly sampling frequency.
I use ^VRPd to predict rdþ1;dþh, the log excess return of the CRSP value-

weighted index over the h days following themeasurement of ^VRPd. Because
the results in BTZ and DY indicate that these proxies predict returns at 1-
month and one-quarter horizons, I consider h¼ 21 and h¼ 63. Also follow-
ing BTZ and DY, I scale log returns to annualized percentages. I adjust the
point estimates for the Stambaugh (1999) bias, using the simulation proce-
dure described in Appendix Appendix B., and account for the overlap using
the approach described in Section 1.2. I also compute simulated standard
errors and p-values using the heteroscedastic simulations (Sim), described in
Appendix Appendix B. For both the observed and simulated samples, I
compute WLS-EV using the RV r̂2

d and VIXF r̂2
d, defined in Section 1.

3.2 Results

Table 4 presents the results for all 12 combinations of variance risk premium
proxy, forecast horizon, and estimator. In all cases, the OLS coefficients are
much larger than the corresponding asymptotic standard errors, resulting in
asymptotic p-values of 5.8%, 4.6%, 3.1%, and 0.3%. This indicates that the
OLS estimates documented inBTZandDYremain significant when using an
overlapping daily sample that also includes 2008–2015.
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The WLS-EV results, which account for heteroscedasticity in point esti-
mates as well as standard errors, are much more pessimistic than the OLS
results. In all cases, the WLS-RV andWLS-VIXF point estimates are statis-
tically insignificant at the 5% level despite standard errors that are asmuch as
35% smaller than their OLS counterparts. This insignificance is a result of
WLS-EV estimates being around half of OLS estimates, indicating OLS
estimates are driven primarily by observations with high ex ante volatility.
To help understand why WLS-EV estimates are much smaller than OLS

estimates, Figure 3 plots the observed ^VRPd and next-month returns
rdþ1;dþ21, along with the OLS andWLS-VIXF regression lines. The darkness
of each point represents its weight in the WLS-VIXF regressions, where the
observation with the highest weight is black and other points are on the gray
scale based on what fraction of the maximum weight the corresponding

Table 4

Predicting returns using the variance risk premium

A. Drechsler and Yaron (2011) approach

^VRPd ¼ VIX2
d � ÊdðFutRV2

dþ1;dþ21Þ

Forecast horizon: 1 month (h ¼ 12) 3 months (h ¼ 63)

OLS WLS-RV WLS-VIXF OLS WLS-RV WLS-VIXF
Stambaugh b̂adj 0.409* 0.215 0.194 0.324* 0.182 0.170
Unadjusted b̂ 0.418 0.223 0.202 0.331 0.189 0.177
SE (Asy) (0.216) (0.162) (0.155) (0.162) (0.123) (0.118)
p-value (Asy %) 5.8 18.6 21.3 4.6 13.9 15.0
SE (Sim) (0.246) (0.180) (0.162) (0.183) (0.141) (0.131)
p-value (Sim %) 9.6 23.2 23.3 7.7 19.9 19.4

B. Bollerslev, Tauchen, and Zhou (2009) approach

^VRPd ¼ VIX2
d � IndRV2

d�20;d

Forecast horizon: 1 month (h ¼ 12) 3 months (h ¼ 63)

OLS WLS-RV WLS-VIXF OLS WLS-RV WLS-VIXF
Stambaugh b̂adj 0.506** 0.233 0.240 0.396** 0.202 0.201*
Unadjusted b̂ 0.513 0.241 0.247 0.404 0.210 0.208
SE (Asy) (0.234) (0.159) (0.154) (0.136) (0.108) (0.104)
p-value (Asy %) 3.1 14.2 11.9 0.4 6.0 5.3
SE (Sim) (0.242) (0.175) (0.157) (0.157) (0.127) (0.117)
p-value (Sim %) 3.7 18.3 12.6 1.2 11.2 8.5

This table presents estimates of return predictability regressions of the form:

rdþ1;dþh ¼ aþ b � ^VRPd þ �dþh;
where rdþ1;dþh is the log dividend-inclusive excess return of the CRSP value-weighted index over the h days
starting with dþ 1, annualized and as percentages. ^VRPd is one of two proxies for the variance risk premium,
both expressed as monthly percentages squared. The first, DYVRPd, is fromDrechsler and Yaron (2011). The
second, BTZ VRPd, is from Bollerslev, Tauchen, and Zhou (2009). For each predictor, I estimate b using OLS
andWLS-EV, detailed in Section 1, using RV r̂2

d and VIXF r̂2
d. I also adjust b for the Stambaugh bias using a

simulation procedure. I compute asymptotic (Asy) errors and p-values for the bias-adjusted coefficients by
mapping to equivalent nonoverlapping regressions, as described in Section 1, and then using Newey and
West (1987) with 21 lags and the simulated (Sim) standard errors and p-values using the procedure described
in Appendix Appendix B. The sample is 6,552 daily observations from 1990 to 2015. *p < :1; **p < :05;
***p < :01.

Review of Asset Pricing Studies / v 9 n 1 2019

24



observation receives. Figure 3 indicates that ^VRPd is near zero for most
observations but extremely positive or negative for a small subset. These
extreme observations also have high VIXF r̂2

d, resulting in a low weight in
the WLS-VIXF regressions. The observations with extremely negative ^VRP
happened to have negative future return realizations, and those with ex-
tremely positive ^VRP happened to have positive future return realizations.
Thus, when these points receive full weight in OLS, the coefficient is strongly
positive. However, WLS-EV downweights these points because their return

Figure 3

Predicting returns using variance risk premiums

This figure illustrates regressions of rdþ1;dþ21, the log dividend-inclusive excess return of the CRSP value-
weighted index over the 21 days starting with d þ 1, annualized and as percentages, on one of two proxies
for the variance risk premium, both expressed as monthly percentages squared. The first, DY VRPd, is from
Drechsler and Yaron (2011). The second, BTZ VRPd, is from Bollerslev, Tauchen, and Zhou (2009). For each
VRPd, I compute point estimates of a and b using OLS andWLS-EV, as detailed in Section 1, using VIXF r̂2

d.
The lines represent the predicted values from the two regressions. The points represent the 6,552 daily obser-
vations from 1990 to 2015, with only every fifth observation plotted to improve readability. The darkness of
each point represents its weight in the WLS-EV regressions, where the observation with the highest weight is
black.
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realizations are particularly poor proxies for expected returns, and instead fits
mostly on the darker points toward the middle of the distribution, which do
not significantly support return predictability.8

3.3 Robustness

To ensure the failure of ^VRP to significantly predict returns in Table 4 is not
driven by the extended sample or overlapping daily returns, I repeat my
analysis on a monthly sample from 1990 to 2007, the sampling frequency
frequency and sample period used in BTZ and DY. For the BTZ analysis, I
use the proxy onHao Zhou’s website to assure that my results are not driven
by an error in my calculation of ^VRP.9 To match BTZ and DY, I also use
S&P 500 returns, rather than the CRSP index returns I use throughout the
paper.
The results of my replication analysis are in Table 5, along with the point

estimates and standard errors from the original DY and BTZ papers for
comparison. In both cases, my replication is quite close to the original papers
in terms of t-stats and p-values. I extend this replication by estimating heter-
oscedastic simulated (Sim) standard errors as well as WLS-EV using RV r̂2

m

on the original BTZ and DY samples.
Unlike for my daily approach, simulated standard errors and p-values for

the monthly samples in Table 5 are much higher for OLS than their asymp-
totic counterparts, reflecting the influence of severe heteroscedasticity in a
shortmonthly sample.As a result, even theOLSpoint estimates are no longer
significant at the 5% level in the original monthly samples when p-values are
computed using heteroscedastic simulations.
More importantly, even in the original papers’ sample, the WLS-EV esti-

mates are only about half as large as the OLS estimates, making them sta-
tistically insignificant despite lower simulated standard errors. This failure
holds across bothVRPproxies and both prediction horizons, in all cases with
simulated p-values above 29%. Table 5 also shows results for simple and log
S&P 500 returns, 1990–2007 daily samples, extended monthly samples, and
combinations thereof. In none of the 24 alternative procedures are WLS-EV
estimates statistically significant at the 5% level, and in only 4 of the 24 are
OLS estimates significant at the 5% level when p-values are computed using
heteroscedastic simulations.
Finally, Table 5 shows ^VRP’s predictability indicated by calendar-

monthly sampling is stronger than the predictability indicated by “offset”
monthly sampling where each “offset month” is defined as starting on the

8 Online Appendix C shows that other approaches to mitigating the influence of these observations, for example,
by using deciles of ^VRPd or winsorizing ^VRPd below at zero, result in even weaker evidence of return predict-
ability in both OLS and WLS-EV regressions.

9 The proxy I use in Table 4 differs from the downloadable version only because I measure it daily using a rolling
21-day window, rather than measuring it for calendar months.
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15th of calendarmonthm and ending on the 14th ofmonthmþ 1. For each of
these offset months, I compute excess market returns, realized variances,
variance risk premium proxies, and everything else I need to assess the var-
iance risk premiums’s predictability exactly as I do for calendar-monthly
sampling. This procedure preserves the sample size, degree of overlap, and
economic basis of calendar-monthly sampling. The columns labelled “Offset
Monthly” in Table 5 show that OLS point estimates are between 18% and
35% smaller in offset-monthly samples compared to calendar-monthly sam-
ples, and none are significant at the 5% level when using OLS or WLS-EV.
This reduction has two potential intrepretations: either variance and equity
risk premiums are more strongly related at the end of calendar months or the
statistical relation in this sample happens to be stronger whenmeasured only
at the end of themonth. I account for this pattern by using daily sampling for
my main analysis, which effectively averages the predictive coefficient from
calendar-monthly observations with the coefficients from all the other poten-
tial offsets (1, 2, . . . 30 days).
OnlineAppendixD revisits the analysis of VRP’s predictability around the

world in Bollerslev et al. (2014) using WLS-EV. While I replicate the OLS
evidence of predictability inmany countries for certain forecast horizons, this
evidence disappears when using small-sample standard errors based on het-
eroscedastic simulations or when using WLS-EV. With either methodology
and a longer daily sample, none of the 56 country-forecast horizon pairs in
Bollerslev et al. (2014) yield statistically significant evidence of return
predictability.

3.4 Discussion

The results in Tables 4 and 5, Figure 3, and Online Appendices C and D do
not indicate significant evidence for a linear relation between conditional
equity and variance risk premiums when using more-efficient WLS-EV
regressions. While this nonresult could indicate the OLS evidence of a rela-
tion is spurious, many other interpretations are also possible. One possibility
is the relation between equity and variance risk premiums is positive but
weaker than indicated by OLS, meaning that we cannot detect it in the rel-
atively short 1990–2015 sample period. Consistent with this possibility, the
WLS-EV estimates are often economically significant, especially for U.S.
data. Another potential interpretation is that the relation between equity
and variance risk premiums is time-varying or nonlinear, meaning linear
regressions are misspecified.
Given these possible interpretations, I viewmyvariance premium results as

indicating a need for further analysis with additional data, or alternative
nonlinear or time-varying specifications, to reach a conclusion about the
predictive value of variance risk premium proxies for equity returns.
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4. Politics, the Weather, and the Stars as Predictors

Novy-Marx (2014) discusses 10 potential return predictors: the political party
of the president of theUnited States, themonthly highest temperature inNew
York City, the global average temperature, the rolling average global tem-
perature, the quasiperiodic Pacific temperature anomaly (El Ni~no), the roll-
ing average Pacific Ocean temperature, the observed number of sunspots, the
rolling average number of sunspots, the angle betweenMars and Saturn, and
the angle between Jupiter and Saturn. Using OLS, Novy-Marx (2014) shows
these 10 variables predict returns for 22 factors or anomalies, forcing readers
to either accept implausible predictive relations or consider “rejecting the
standard methodology on which the return predictability literature is built”
(Novy-Marx 2014, p. 144).
As a final application of theWLS-EVmethodology, I revisit the surprising

predictability evidence in Novy-Marx (2014) and show it is weaker when
using WLS-EV instead of the standard OLS methodology. For each of the
10 predictors Novy-Marx (2014) considers, I estimate monthly predictive
regressions using data from 1961 to 2012.10 I find that small-sample p-values
based on the simulation approach in Appendix Appendix B. indicate OLS
estimates are significant for the same three variables Novy-Marx (2014) finds
predict market returns: the president’s political party, New York City
weather, and the Mars/Saturn angle. However, WLS-EV estimates of these
variables’ predictability are all closer to zero, and all have higher p-values
than their OLS counterparts, with only Mars/Saturn remaining statistically
significant.Moreover,WLS-EV estimates of the other seven variables remain
insignificant despite smaller simulated standard errors.
I also estimate the joint significance of these variables in a multivariate

predictive regression using an asymptotic v2 test, as well as a small sample v2

test that employs the covariancematrix ofmultivariate point estimates across
simulated samples. I compute p-values for small sample v2 using the distri-
bution of this statistic across the same simulations. Table 6 presents the re-
sultant statistics for both OLS andWLS-EV estimators. The 10 variables are
jointly significant with a p-value of 3.30% when using OLS and an asymp-
totic v2 test. However, my heteroscedastic simulation approach and WLS-
EV both result in the 10 predictors no longer being jointly significant, with
p-values between 11% and 22%.

4.1 The presidential puzzle

To illustrate what drives the difference betweenWLS-EV and OLS estimates
for the Novy-Marx (2014) predictors, I examine the predictability afforded
by the president’s party in more detail. As documented in Santa-Clara and

10 I follow Novy-Marx (2014) by limiting my sample to 1961–2012 and not adjusting for the Stambaugh (1999)
bias.
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Valkanov (2003) and Novy-Marx (2014), average market returns are higher
under Democratic presidents than Republican ones. P�astor and Veronesi
(2017) provides a model rationalizing this “presidential puzzle” in which
voters prefer redistributive Democrats during bad times, which also feature
high risk premiums.
I provide an alternative explanation for the presidential puzzle, that it

stems from the realizations of unexpected returns in a few months with
high ex ante volatility, rather than variations in expected returns as

Table 6

Predicting returns using politics, the weather, and the stars

Predicting next-month returns

OLS WLS-EV OLS WLS-EV OLS WLS-EV

Predictor: Dem NYC weather Global temp.

b̂ 0.767** 0.491 �0.026** �0.016 0.112 0.250
p-value (Asy %) 3.3 12.5 3.7 14.9 80.4 50.9
p-value (Sim %) 3.9 12.7 4.3 15.6 83.8 59.2

Predictor: Roll. global temp. El Nino Roll. El Nino

b̂ 0.106 0.327 0.000 0.026 �0.303 0.039
p-value (Asy %) 84.6 44.8 99.8 87.9 52.5 92.5
p-value (Sim %) 85.8 52.5 99.8 87.9 57.1 93.0

Predictor: Sunspots Roll. sunspots Mars/Saturn angle

b̂ �0.002 �0.003 0.005 0.006 0.513*** 0.398**
p-value (Asy %) 44.9 25.2 55.3 47.1 1.3 1.8
p-value (Sim %) 46.1 25.7 65.4 52.0 0.9 1.6

Predictor: Jupiter/Saturn angle

b̂ �0.009 �0.113
p-value (Asy %) 96.5 56.9
p-value (Sim %) 96.5 54.1

Joint significance: OLS WLS-EV OLS WLS-EV

v2 statistic (Asy) 19.602** 14.84 v2 statistic (Sim) 15.51 13.19
p-value (Asy %) 3.30 13.80 p-value (Sim %) 11.30 21.40

This table presents estimates of return predictability regressions of the form:

rmþ1 ¼ aþb�xm þ�tþ m;

where rmþ1 is the log dividend-inclusive excess return of the CRSP value-weighted index in month m þ 1, as
percentages, andxm is one of 10 predictors fromNovy-Marx (2014): an indicator forwhether the president of the
United States is a Democrat (Dem), the monthly highest temperature in New York City (NYC weather), the
global temperature anomaly (global temp.), the rolling average global temperature (roll. global temp.), the
quasiperiodic Pacific temperature anomaly (El Ni~no), the rolling average Pacific Ocean temperature (roll. El
Ni~no), the number of sunspots (sunspots), the rolling average number of sunspots (Roll. sunspots), the angle
between Mars and Saturn (Mars/Saturn angle), and the angle between Jupiter and Saturn (Jupiter/Saturn
angle). For each predictor, I compute point estimates of b using OLS andWLS-EV, detailed in Section 1, using
RV r̂2

m. I compute p-values for the coefficients as well as for joint significance using the heteroscedastic simu-
lation procedure (Sim) described in Appendix Appendix B. and Section 4. The sample is 624 monthly obser-
vations from 1961 to 2012. *p < :1; **p < :05; ***p < :01.
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hypothesized in P�astor and Veronesi (2017). To support this hypothesis, I
revisit the presidential puzzle using the same sample period as P�astor and
Veronesi (2017) but applying myWLS-EV estimator. Specifically, in a 1927–
2015 monthly sample I regress annualized log excess market returns on an
indicator for whether the current U.S. president is a Democrat at the end of
month m:

rm ¼ aþ b �Demm þ �m: (17)

This analysis differs from theNovy-Marx (2014) analysis by using a longer
sample period and not lagging Demm because a new president is inaugurated
in January, more than 2 months after the election, meaning Demm is always
known prior to month m.
Panel A of Table 7 presents estimates of Equation (17) in the full sample

and for the three subsamples. My OLS results replicate those in Santa-Clara
and Valkanov (2003) and P�astor and Veronesi (2017), with a 10.19% differ-
ence in average annualized log returns between Democratic and Republican
presidents. The magnitude of this difference is consistent in the first and
second half of the sample, and the asymptotic p-value for the full sample is
1.7%.
Table 7 also shows that the presidential puzzle shrinks substantially and is

insignificant when using WLS-EV. Specifically, the estimated difference in
returns between Democratic and Republican presidents shrinks to 4.38%,
and the p-value rises to 22.6%. The difference is also smaller and insignificant
when using WLS-EV in both halves of the sample.
To help understand why WLS-EV estimates of the presidential effect are

insignificant, I examine how the magnitude of the return difference varies
with ex ante volatility RV r̂m�1. By using ex ante volatility instead of realized
volatility, I avoid the well known negative correlation between realized
returns and volatility. Instead, months with high RV r̂m�1 have volatile re-
alized returns rm that can be positive or negative and are particularly noisy
measures of expected returns.11 Panel B of Table 7 shows that among obser-
vations with high ex ante volatility, realized returns happened to be strongly
positive under Democratic presidents and negative under Republican ones.
This return difference is most dramatic among the top 1% of months by ex
ante volatility, in which average market returns were 21.7% (260.4% annu-
alized) under Democrats and –6.6% (–79.0% annualized) under
Republicans.
Without these few observations with high ex ante volatility, the presiden-

tial puzzle disappears evenwhen usingOLS. Table 7 demonstrates this in two
ways. First, panel A shows that without two post-crash periods (1929:11
through 1934:11 and 2008:11 through 2009:12), the difference in average

11 For example, panel C ofTable 7 illustrates that the top 1% ofmonths byRV r̂m�1 are not themonths ofmarket
crashes, like those in October of 1929, 1987, or 2008, but rather are the months after market crashes.
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Table 7

The presidential puzzle

A. Subsamples by time

Sample: 1927-2015 1927-1971 1972-2015 No post-crash

Observations: 1,062 535 527 988

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV
Democrat mean 10.69 8.63 10.70 8.53 10.68 8.79 9.77 8.56
Republican mean 0.49 4.24 0.24 7.06 0.66 2.02 3.80 5.06
Difference 10.19*** 4.38 10.46* 1.47 10.01** 6.765* 5.97* 3.51
p-value (Asy %) 1.7 22.6 18.2 80.6 2.7 10.9 11.5 33.2
p-value (Sim %) 0.6 11.1 7.7 69.7 4.6 9.9 7.4 20.5
p-value (FSS Sim %) 1.3 17.0 10.1 74.1 6.6 14.4 11.4 27.6

B. Subsamples by ex ante volatility (RV r̂t�1)

Sample: Top 1 of rm�1 Top 10 rm�1 Top 20 rm�1 Bottom 80 rm�1

Observations: 11 106 213 849

OLS WLS-EV OLS WLS-EV OLS WLS-EV OLS WLS-EV
Democrat mean 260.41 266.81 11.10 3.14 15.07 12.70 9.64 8.39
Republican mean �78.98 �73.52 �25.51 �20.33 �17.11 �13.63 5.14 5.52
Difference 339.38*** 340.33*** 36.61 23.47 32.18** 26.33** 4.50 2.87
p-value (Asy %) 0.0 0.0 16.1 29.4 2.6 2.4 20.8 38.9
p-value (Sim %) 0.4 0.5 13.6 27.9 1.9 2.2 15.3 30.9
p-value (FSS Sim %) 0.4 0.4 13.9 27.9 2.0 2.4 21.2 38.1

C. Top 1 of months by RV r̂m�1

Democratic president
Month RV r̂m�1 (%) Monthly rm (%) Annualized rm (%)
1933:04 14.3 32.0 384.5
1933:08 15.1 11.4 136.3
Mean 14.7 21.7 260.4
Republican president
Month RV r̂m�1 (%) Monthly rm (%) Annualized rm (%)
1929:11 17.3 �13.6 �162.7
1929:12 14.2 1.5 17.5
1931:11 13.7 �9.6 �114.6
1932:09 14.1 �3.2 �38.5
1932:10 15.0 �14.0 �167.5
1932:11 14.2 �5.8 �69.4
1987:11 17.5 �8.1 �97.1
2008:11 16.8 �8.2 �98.2
2008:12 14.4 1.6 19.8
Mean 15.8 �6.6 �79.0

This table presents estimates of return predictability regressions of the form:

rm ¼ aþ b�Demm þ �m;

where rm is the log dividend-inclusive excess return of the CRSP value-weighted index inmonthm, in annualized
percentages. Demm is an indicator for whether the President of the United States is a Democrat at the end of
monthm. I estimate a and b using OLS andWLS-EV, detailed in Section 1, using RV r̂2

m�1. Panel A estimates
this regression across different subsamples partitioned by time and panel B by RV r̂m�1. For each subsample
and estimator, I present the Democrat mean (âþ b̂), the Republican mean (â), the Difference (b̂), and p-values
for b̂ computed using using Newey and West (1987) (Asy) and simulation procedures described in Appendix
Appendix B. without and with the Ferson, Sarkissian, and Simin (2003) effect (Sim and FSS Sim). Panel C
presents RV r̂m�1 and rm in the top 1% of the sample by RV r̂m�1, partitioned by whether the president was a
Democrat or Republican. *p < :1; **p < :05; ***p < :01.
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returns is insignificant using both OLS and WLS-EV.12 Second, panel B
shows that in time periods with normal volatility, defined as the bottom
80% of months by RV r̂t�1, the difference in average returns is also insig-
nificant. Of course, by arbitrarily excluding observations one can always
strengthen or weaken an empirical result. However, the subsample analysis
in Table 7 illustrates why WLS-EV estimates, which use the full sample but
put lessweight on observationswith high ex ante volatility (and low signal-to-
noise ratios), are so much smaller than OLS estimates of the presidential
puzzle.
A potential statistical bias affecting the presidential puzzle evidence is the

Ferson, Sarkissian, and Simin (2003) effect: if true expected returns are time
varying and persistent in a way unrelated to the predictors being tested, these
variations will be absorbed in the regression residuals, creating autocorrela-
tion at long lags that is cannot be corrected for using the standardNewey and
West (1987) approach. Instead, Ferson, Sarkissian, and Simin (2003) suggest
using simulations in which returns are generated by combining an AR(1)
process for expected returns with independent unexpected returns. I apply
this suggestion, combined with the heteroscedastic unexpected returns de-
tailed inAppendixAppendixB., to the presidential dummypredictor because
it is extremely persistent and Powell et al. (2007) show that a related bias
could be driving its significance.13

Table 7 shows that using Ferson, Sarkissian, and Simin (2003) simulations
weakens the statistical significance of the presidential dummy, as evidenced
by the “FSS Sim” p-values being larger than p-values from simulationswith a
constant mean. However, the Ferson, Sarkissian, and Simin (2003) effect is
small relative to the WLS-EV effect. The impact of time-varying means is
muted in my simulations because of the calibration I use (see Appendix
Appendix B. for details). I allow true expected returns to be extremely per-
sistent, which maximizes their impact, but restrict the extent of their varia-
tions so that the 90% confidence interval for annualized expected excess
returns is ½�1:7%; 14:3%�. This variation in expected returns is on the low
end of the range studied in Ferson, Sarkissian, and Simin (2003), limiting its
impact. More variable expected returns would have a bigger impact on sta-
tistical inference, but are difficult to reconcile with rational asset pricing
theories.

4.2 Discussion

The insignificantWLS-EV and joint tests of predictability by the 10 variables
inNovy-Marx (2014), including the party of theU.S. president, are consistent
with the hypothesis that the predictive relations in Novy-Marx (2014) are

12 I define the post-crash periods as starting in 1929:11 and 2008:11 and ending when annualized ex ante volatility
RV r̂t�1 next falls below 20% in 1934:11 and 2009:12.

13 Powell et al. (2007) uses simulations where realized returns, instead of expected returns, follow an AR(1).
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false positives driven by data mining targeting OLS significance. Because
WLS-EV and joint significance were not used to select the predictors in
Novy-Marx (2014) and therefore not the target of datamining, they naturally
produce weaker predictability evidence than univariate OLS. Appendix
Appendix B. illustrates this point by showing that, in samples simulated
under the no-predictability null for which the OLS estimate is nevertheless
significant, perhaps because of data mining, WLS-EV estimates are 40–50%
closer to zero on average and insignificant in 55–65% of these false-positive
samples. Of course,WLS-EV evidence could also be subject to datamining if
predictors are selected from many candidates based on their WLS-EV sig-
nificance, in which case I also show OLS estimates are often insignificant.
However, any data mining in prior literature is likely to have targeted OLS,
making WLS-EV useful in revisiting return predictability.
The presidential puzzle evidence supports and provides nuance to the false-

positive hypothesis for the Novy-Marx (2014) results. Using OLS, a false
positive is likely to arise when a predictor happens to historically portend
large unexpected returns during periods of high ex ante volatility. I find this
exact pattern in Table 7, with returns being highly positive for a few volatile
observations under Democrats and negative under Republicans. The magni-
tudes of these realizations are difficult to reconcile with variations in risk
premiums, which should be small and positive. Instead, they are consistent
with unexpected returns driven by randomness in small samples.

5. Conclusion

I study time-series return predictability by developing and applying WLS-
EV, an estimator that incorporates information about time-varying volatility
into both point estimates and standard errors. The WLS-EV approach is
convenient to use and 25%–35% more efficient than OLS in standard
settings.
My results indicate that the apparent failures of traditional variables, dis-

cussed in Goyal and Welch (2008), are often false negatives due to a lack of
power in OLS estimates rather than a fundamental failure of return predict-
ability. When combined with the restriction that out-of-sample forecasts
must always be positive, seven predictors significantly predict next-month
and next-year returns, both in- and out-of-sample, when using WLS-EV:
dividend yield, Treasury-bill yield, long-term Treasury return, term spread,
inflation, payout yield, and consumption-to-wealth ratio. None of these pre-
dictors work as well or as consistently when using OLS. Of the remaining
predictors, three have WLS-EV evidence that is stronger than OLS but still
inconsistent (dividend-to-price ratio, earnings-to-price (ep) ratio, and long-
term Treasury yields) and the remaining six (dividend-to-earnings ratio, con-
ditional variance, default spread, book-to-market ratio, cross-sectional beta
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premium, and net equity issuance) are insignificant for both OLS andWLS-
EV estimates.
On the other hand, I show that the evidence of a predictive relation be-

tween the variance risk premium and market returns depends critically on a
few observations with high ex ante volatility, indicating the need for a longer
sample period or further nonlinear analysis to reach a conclusion on the true
empirical relation. My results are also consistent with the false-positive in-
terpretation of the predictive variables presented in Novy-Marx (2014), in-
cluding the party of the U.S. president, the weather in New York City, and
the angle between Mars and Saturn, illustrating that WLS-EV is useful for
reassessing predictors that may be spurious or have been selected via data
mining based on OLS significance.
Overall, my more-efficient estimator affirms the predictability afforded by

predictors with long sample periods and a connection to the equity risk pre-
mium grounded in theory and calls into question predictors with shorter
sample periods or weak grounding in theory.

Appendix A. Technical Details

A.1. Transforming Overlapping Regressions into Equivalent Nonoverlapping

Regressions

For regressions with overlapping return observations, I first map these regressions into equivalent

nonoverlapping return regressions following a trick suggested in Hodrick (1992). Consider a

regression of next h-period log returns returns on Xt:

rtþ1;tþh ¼ Xt � bþ �tþ1;tþh: (A1)

Two potential estimates of b are the standard overlapping OLS estimates b̂
overlap

OLS and the

Hodrick (1992) estimates b̂
hodrick

OLS , defined as follows:

b̂
overlap

OLS ¼ ETðX0tXtÞ�1ETðXt
0rtþ1;tþhÞ; (A2)

b̂
hodrick

OLS ¼ ETðX0tXtÞ�1ETð �Xt
0 �XtÞETð �X

0
t

�XtÞ�1ETð �Xt
0
rtþ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�b̂
roll

OLS

; (A3)

whereET represents the sample average and �Xt �
Ph�1

s¼0 Xt�s is the rolling sum of pastXt. b̂
roll

OLS is

the OLS coefficient estimate in a nonoverlapping regression of rtþ1 on �Xt.

These two estimates both converge to the true b asymptotically, and they are approximately

equal to each other in finite samples.

Theorem 1. Under the identifying assumption E½Xt � �tþ1;tþh� ¼ 0, both b̂
overlap

OLS and b̂
hodrick

OLS

are asymptotically consistent estimates of b:

boverlap
OLS � plimT!1b̂

overlap

OLS ¼ b; (A4)

bhodrick
OLS � plimT!1b̂

hodrick

OLS ¼ b: (A5)
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Proof. Standard econometric results show that b̂
overlap

OLS converges in probability to

bOLS ¼ EðX 0tXtÞ�1EðXt
0rtþ1;tþhÞ ¼ b: (A6)

Substituting in rtþ1;tþh ¼
Ph
s¼1

rtþs, we have:

bOLS ¼ EðX0tXtÞ�1E
Xh
s¼1

Xt
0rtþs

 !
(A7)

¼ EðX 0tXtÞ�1Eð �Xt
0 �XtÞEð �X

0
t

�XtÞ�1E
Xh�1
s¼0

Xt�s
0

 !
rtþ1

" #
(A8)

¼ bhodrick
OLS : (A9)

Combined, we have bhodrick
OLS ¼ boverlap

OLS ¼ b. h

Lemma 2. In settings in which Xt includes a constant and a univariate predictor xt, Theorem

1 implies boverlapOLS ¼ bhodrickOLS , where

boverlapOLS � Covðrtþ1;tþh;xtÞ
VarðxtÞ

(A10)

bhodrickOLS � Varð�xtÞ
VarðxtÞ

Covðrtþ1; �xtÞ
Varð�xtÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

broll
OLS

: (A11)

Equation (A11) is the basis for the approach I use throughout the paper
in settings with overlapping observations.
In addition to converging to the same value asymptotically, b̂

overlap

OLS and

b̂
hodrick

OLS are approximately equal in small samples. We have

b̂
overlap

OLS ¼ 1

T� h

XT�h
t¼1

Xt0Xt

 !�1
1

T� h

XT�h
t¼1

Xh
s¼1

Xt
0rtþs; (A12)

¼ 1

T� h

XT�h
t¼1

Xt0Xt

 !�1
1

T� h

XX
ðu�tÞ2½1;h�

t2½1;T�h�

Xt
0ru; (A13)

b̂
hodrick

OLS ¼ 1

T

XT
t¼1

Xt0Xt

 !�1
1

T� h

XT
t¼hþ1

Xh
s¼1

Xt�s
0rt; (A14)

¼ 1

T

XT
t¼1

Xt0Xt

 !�1
1

T� h

XX
ðu�tÞ2½1;h�

u2½hþ1;T�

Xt
0ru: (A15)

Equations (A13) and (A15) show that the two estimators both sum Xt
0ru

for all observations with u� t 2 ½1; h�, and premultiply by the inverse of
an estimated covariance matrix for Xt. The only difference is the set of
observations that are available at the very end and beginning of the
sample. The overlapping estimator skips observations with t > T� h be-
cause the full next-h period returns are not available. The Hodrick (1992)
estimator skips observations with u < hþ 1 because the full last-h period
sum of Xt is not available. As a result, Equations (A13) and (A15) each
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Table A1

Size, power, and data mining in simulations

A. No predictability null (b ¼ 0)

dp VRP

OLS WLS-EV OLS WLS-EV

Mean b̂ 0.000 0.000 0.001 0.001
Median b̂ 0.001 0.000 0.001 0.001
Standard dev b̂ 0.423 0.289 0.246 0.162
Mean Asy SE b̂ 0.403 0.283 0.236 0.161
Prob(Asy p-val < 10%) (%) 11.5 11.1 11.8 10.4
Prob(Asy p-val < 5%) (%) 5.7 5.9 6.3 5.3
Prob(Asy p-val < 1%) (%) 1.2 1.4 1.4 1.1
90th percentile jb̂j 0.697 0.476 0.404 0.266
95th percentile jb̂j 0.829 0.566 0.480 0.317
99th percentile jb̂j 1.088 0.745 0.634 0.418
Mean OOS R2 (%) –0.70 –0.31
Standard dev OOS R2 (%) 0.87 0.30
ProbðOOS R2 > 0Þ (%) 9.49 10.12
90th percentile OOS R2 (%) –0.02 0.00
95th percentile OOS R2 (%) 0.20 0.17
99th percentile OOS R2 (%) 0.72 0.56

B. Predictability null (b > 0)

dp (b ¼ 1) VRP (b ¼ 0.4)

OLS WLS-EV OLS WLS-EV

Mean b̂ 0.999 0.999 0.401 0.401
Median b̂ 0.998 0.999 0.401 0.401
Standard dev b̂ 0.423 0.290 0.246 0.162
Mean Asy SE b̂ 0.403 0.283 0.236 0.161
Prob(Sim p-val < 10%) (%) 76.2 96.4 49.2 79.6
Prob(Sim p-val < 5%) (%) 65.6 93.2 37.2 69.7
Prob(Sim p-val < 1%) (%) 41.2 81.2 17.3 45.5
Mean OOS R2 0.66 0.89
Prob(OOS R2 sim p-val < 10%) (%) 65.1 77.4
Prob(OOS R2 sim p-val < 5%) (%) 57.1 70.2
Prob(OOS R2 sim p-val < 1%) (%) 38.1 51.6

C. Data mining under no predictability null (b ¼ 0)

dp VRP

OLS WLS-EV OLS WLS-EV

All Samples
Mean jb̂j 0.338 0.231 0.196 0.129
Prob(Asy p-value < 5%) (%) 5.7 5.9 6.3 5.3
Samples with OLS Asy p-value < 5%
Mean jb̂j 0.904 0.520 0.532 0.270
Prob(Asy p-value < 5%) (%) 100.0 42.9 100.0 34.7

(continued)
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sum a total of hðT� hÞ terms, with all but hðh�1Þ
2 terms shared with the

other approach ( h�1
2ðT�hÞ of the total). When T >> h, as is the case in the

settings I study, this difference is small and b̂
hodrick

OLS is approximately equal

to b̂
overlap

OLS .

In the Online Appendix, I show empirically that b̂
hodrick

OLS is approxi-

mately equal to b̂
overlap

OLS in the settings I study, with differences of at most

8%. Using simulations, I also show that the Hodrick (1992) approach
results in more accurate standard errors for both OLS and WLS-EV and
makes WLS-EV substantially more efficient. Therefore, I use the
Hodrick (1992) approach to address overlapping observations through-
out the paper.

A.2. When Is WLS-EV the Most Efficient Linear Unbiased Estimator?

The estimator in Equation (2) is the asymptoticallymost efficient linear unbiased estimator (GLS)

if and only if

Varð�tþ1Þ ¼ r̂2
t ; and (A16)

Covð�s; �tÞ ¼ 0 8s 6¼ t: (A17)

The condition in Equation (A17) requires that any autocorrelation in returns arises through

the Xt variables, making unexpected returns uncorrelated at any lag. My Hodrick-style (1992)

Table A1

Continued

C. Data mining under no predictability null (b ¼ 0)

dp VRP

OLS WLS-EV OLS WLS-EV

Samples with WLS-EV Asy p-value < 5%
Mean jb̂j 0.686 0.649 0.402 0.369
Prob(Asy p-value < 5%) (%) 42.0 100.0 40.8 100.0

This table presents results of simulations in which I generate returns according to

r
sim

t þ1¼ lr þ b � xtdataþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RVdata

tþ1

q
w
resampled

tþ1 ;

where lr is the in-sample mean of rt; x
data
t is a return predictor from the data; RVdata

t is the intraperiod realized
variance; and wresampled

tþ1 is randomly resampled in each simulation. In panel A, I simulate under the no-predict-
ability null that b¼ 0. In panel B, I set b¼ 1 or b ¼ 0:4. For dividend-to-price (dp) ratio simulations, I express
returns as percentages and use 1,062 monthly observations from 1927 to 2015 of xt ¼ dpt, the log dividend-to-
price ratio of the market portfolio, along with RV r̂2

t for WLS-EV. For the variance risk premium (VRP)
simulations, I express returns as annualized percentages and use 6,552 daily observations from 1990 to 2015 of
xt ¼ ^VRP t, Drechsler and Yaron (2011) variance risk premium detailed in Section 3, along with VIXF r̂2

t for
WLS-EV.For each simulated return series, I compute point estimates (b̂), asymptotic standard errors (Asy SE b̂)
and p-values (Asy p-val) using Newey and West (1987), simulated p-values (Sim p-val), and out-of-sample R2

(OOS R2) using both OLS and WLS-EV as detailed in Section 1. Panels A and B describe the distribution of
these statistics all simulated samples, and panel C focuses on simulated samples with OLS or WLS-EV false
positives only.
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approach to addressing overlapping observations only estimates WLS-EV in a nonoverlapping

regression, as described above, assuring there is no overlap-driven autocorrelation in �t. Rational

asset pricing models predict that, given the right vector of Xt variables, nonoverlapping returns

satisfy (A17). However, because most of my regressions are univariate, I expect some autocorre-

lation in returns. Rather than making the additional assumptions needed to incorporate this

autocorrelation into a complete covariance matrix of errors and using GLS, I ignore autocorre-

lation in calculating point estimates and use WLS-EV, but address it when making inferences by

using Newey and West (1987) standard errors.

The condition inEquation (A16) requires that the r̂2
t used empirically are the true variances for

future unexpected returns. Since the true Varð�tþ1Þ are unobservable, I strive to find ex ante

proxies that are as accurate as possible. Because these proxies are imperfect measures of the

true conditional return variance, it is unlikely that WLS-EV is the perfectly efficient GLS estima-

tor in practice. However, simulation evidence in my setting and in other weighted least-squares

settings (e.g., Romano and Wolf 2017) show WLS nevertheless generates substantial efficiency

gains relative to OLS. I also use heteroscedasticity-consistent standard errors to address any

heteroscedasticity remaining due to imperfect ex ante variance proxies.

A.3. Weighting by Ex Post Measures of Variance

A natural alternative to weighting be ex ante variance predictors is weighting by ex post variance

estimates. One example is “robust least squares” (RLS) estimates (e.g., Drechsler and Yaron

2011), which weight observations using a function of estimated j�tþ1j. Observations with larger

j�tþ1j presumably also have more volatile �tþ1, on average, and therefore receive smaller weights.

These weights use information from the period returns are realized, tþ 1, rather than the ex ante

measures available at time t I use in WLS-EV. The advantage of using time t þ 1 information is

that it can provide more accurate estimates of Varð�tþ1Þ.
However, using time t þ 1 information comes with a critical disadvantage: the strong corre-

lation between realized variance and the directional realization of �tþ1 biases the coefficient

estimates. Because negative returns are more volatile than positive returns, negative � have larger

variance and smaller weights than positive �. As a result, when the predictor Xt is positively

(negatively) correlated with return variance, the coefficient estimated with RLS or any ex post

weighting scheme will be biased upward (downward). Therefore, it is unsurprising, given the

variance risk premium is positively correlated with return variance, that Drechsler and Yaron

(2011) finds RLS coefficients are more positive than OLS coefficients. The WLS-EV approach

avoids this mechanical connection between weights and �tþ1 by using ex ante variance weights.

Appendix B. Simulations

In this appendix, I describe the heteroscedastic small-sample simulations I use to compute stan-

dard errors and p-values throughout the paper. These simulations also provide further insight into

OLS and WLS-EV’s size, power, and potential to detect data mining.

B.1. Simulation Procedure

The efficiency and small-sample biases of each estimation procedure depend critically on vari-

ability of return variance, the asymmetry in the return distribution, the time-series distribution of

the predictor, and the correlations among these variables. Rather than attempting to model these

distributions, I use a variation of the “wild bootstrapping” technique often employed to generate

heteroscedastic samples. (SeeLiu (1988),Mammen (1993), andDavidson andFlachaire (2008) for

details.)
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My simulation procedure begins by taking observed excess returns rdatat and computing the

standardized next-period return for each observation:

wdata
t � rdatat � lrffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RVdata
t

p ; (B1)

whereRVdata
t is the observed realized intra-period variance, and lr is chosen so thatEðwdata

tþ1 Þ ¼ 0.

I then create 100,000 simulated samples by re-sampling the wdata
t (with replacement) and com-

puting the next-period returns as follows:

rsimtþ1 ¼ lr þ b � xdatat þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RVdata

t

q
wre�sampled
tþ1 ; (B2)

where xdatat are the observed values of a predictor variable, and I specify the population prediction

coefficient b.14 These simulated returns inherit the skewness, any heteroscedasticity not captured

by RVdata
t , and other properties of the observed return distribution while still having conditional

mean lr þ b � xdatat and variance RVdata
t .

For each simulated return sample, I regress the redrawn returns rsimtþ1 on xdatat and a constant

using both OLS andWLS-EV, where WLS-EV weights are as described in Section 1, and record

the resultant coefficients (b̂
sim

) and HAC standard errors (SE b̂
sim

). Note that, in this simulation

procedure, the weights I use for WLS-EV do not equal the true variances of returns, and instead

only forecast RVdata
tþ1 as well as they do in observed data. Therefore,WLS-EV only results inmore

efficient estimates to the extent that the ex ante weights I use predict future realized variance and

do not introduce additional noise or bias.

B.2. Simulated Standard Errors and p-Values

The simulated standard errors and p-values I use are based on the simulations described above.

Simulated standard errors for in-sample tests equal the standard deviation across simulated

samples of the point estimates b̂
sim

. Simulated p-values for in-sample tests are two-sided and equal

the fraction of simulated samples with jb̂simj > jb̂dataj.
I also use these simulations to assess the statistical significance of out-of-sampleR2 in Table 3.

To do so, for each simulated sample I repeat the out-of-sample forecasting exercise described in

Section 2.2, using past data only to estimate predictability coefficients, and applying these past-

only coefficients to the present values of x to compute an out-of-sample forecast for each time

period. Following this procedure yields an OOS R2 for each simulated sample, which I use to

compute a one-sided p-value for the out-of-sample tests as the fraction of simulated samples with

Sim OOS R2 > Data OOS R2.

B.3. Test Size and Efficiency

To assess the size and efficiency of OLS and WLS-EV tests, I first implement my simulation

procedure on amonthly sample from1927 to 2015 using the log dividend-to-price (dp) ratio as the

predictor and RV r̂2
m for the WLS-EV estimates. Panel A of Table A1 shows summary statistics

for these simulations under the no-predictability null b ¼ 0. Using WLS-EV rather than OLS

results in large efficiency gains, reducing the standard deviation of b̂ from 0.423 to 0.289, a 32%

decrease. Both estimators are unbiased in these simulations, withmean values of 0. Here, I do not

find a Stambaugh (1999) bias, because the redrawn standardized returns are uncorrelated with

innovations in the dp ratio. I correct for the Stambaugh (1999) bias throughout the paper using the

procedure described in Section B.5.

14 For bootstrapped standard errors, I specify the null b¼ 0. In this appendix, I also study simulations with b> 0.
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Given the true b is zero, an effective estimator rejects the b ¼ 0 null (a “false positive”) as

infrequently as possible. An estimator would reject with a C% critical value in more than C% of

simulations for two reasons: a directional bias in the average b̂ or a downward bias in asymptotic

standard errors. In addition to having unbiased b̂, bothOLS andWLS-EVhave average standard

errors only slightly smaller than the standard deviation of b̂, indicating that the asymptotic HAC

standard errors are quite accurate for the dp ratio in this sample and can account for the remaining

heteroscedasticity caused by imperfect variance weights (as suggested by Romano and Wolf

2017). As a result, OLS and WLS-EV t-tests reject the null at the 5% level in 5.7% and 5.9%

of simulations, respectively.

Of course, even with a relatively small false-positive rate, it is important to use simulated

standard errors that, by construction, reject the null in exactly 5% of simulated samples. As

described above, I do so using two-sided tests comparing jb̂j in the data to the distribution of jb̂
j in simulations. I summarize this distribution in panel A by showing the 90th, 95th, and 99th

percentiles of jb̂j, which serve as the critical values formy tests. BecauseWLS-EV ismore efficient,

its critical values for rejecting the no-predictability null are smaller, allowingWLS-EV to reject in

many cases that OLS fails to reject.

An alternative test statistic for return predictability I consider in Section 2 is OOS R2. I

illustrate the properties of this statistic using the same simulation procedure. As discussed in

Goyal andWelch (2008) and elsewhere, under the no-predictability null OOSR2 will be negative,

on average, due to overfitting associated with estimation error. Panel A of Table A1 confirms this

is the case inmy simulations, with negativemeanOOSR2 for bothOLS andWLS-EV. Themore-

efficient WLS-EV limits estimation error, resulting in a less-negative mean OOS R2. Estimation

error affects the variance across simulations of OOS R2 as well as its mean, with OLS OOS R2

being substantially more volatile. These two effects offset, making OLS and WLS-EV OOS R2

about equally likely to be positive, and giving them similar 90th and 95th percentiles under the

null. These percentiles serve as critical values for the statistical tests I use in Table 3.

Given the true b is nonzero, an effective estimator fails to reject the b ¼ 0 null (a “false

negative”) as little as possible. To assess the frequency of false negatives, I repeat the simulation

exercise assuming b¼ 1. For each simulated sample, I compute the small-sample p-value based on

the distribution of b̂ for each estimator under the no-predictability null. A false negative is defined

by a failure to reject the no-predictability null.

The main result in panel B is that false negatives are much less likely for WLS-EV than OLS

both in- and out-of-sample, illustrating one benefit ofmore efficient point estimates. For OLS, in-

sample p-values are less than 5% in 65.6% of simulations, meaning the false negative rate is

34.4%,much higher than the false negative rate forWLS-EVof 6.8%.Out-of-sample p-values tell

a similar story, with OLS having a false negative rate of 42.9% while WLS-EV’s rate is 29.8%.15

False negatives occur less frequently forWLS-EV because the added efficiency allows for smaller

standard errors, resulting in sharper inferences.

To assess WLS-EV in shorter samples and using a predictor more directly related to ex ante

variance, I also implement this simulation procedure on an overlapping daily sample from1990 to

2015, using the variance risk premium (VRP) proxy defined in Drechsler and Yaron (2011) as to

predict next-month returns. The results are in the second columnofTableA1. The conclusions are

largely the same as for the dp ratio, but the effects are stronger because VRP are more strongly

correlated with ex ante volatility than the dp ratio. As a result, WLS-EV estimates are 34%more

efficient than OLS estimates. WLS-EV estimates are also less susceptible to false positives, with

asymptotic t-stats rejecting the null at the 5% level in 5.3% of samples, compared to 6.3% of

samples for OLS. Finally, I assess the false negative rate of the three estimators in the VRP setting

with b ¼ 0.4. Mirroring the results in panel B for the dp ratio, WLS-EV has false negatives in

15 As emphasized in Cochrane (2008), out-of-sample tests are less powerful than in-sample tests, resulting in more
false negatives for a given estimator.
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around 30.3% of simulations, compared to 62.8% forOLS.Given the shorter sample period, I do

not use out-of-sample tests for VRP.

B.4. Data Mining

Imagine a researcher tried different predictors until they found one that had a sufficiently low p-

value. If predictors were selected via this form of data mining but the true correlation with future

returnswas zero, another estimatormight be useful as a partially independent test of the same null

hypothesis that may fail to reject using the same data.

To illustrate this point, I use the same simulation procedure described abovewith the b¼ 0 null

hypothesis but focus only on sampleswhere the asymptoticOLSorWLS-EV p-value is below5%.

For this false-positive sample, panel C of Table A1 shows the average absolute point estimates jb̂j
and the probability the asymptotic p-value is less than 5% for both OLS and WLS-EV.

I find that for samples selected for their OLS significance, WLS-EV point estimates are 42%

and 49% closer to zero, on average, thanOLS estimates for the dp andVRP samples, respectively.

This is consistent with themagnitudes of the decline in point estimates I find for both the variance

risk premium and the Novy-Marx (2014) predictors. Furthermore, only 43% and 35% of OLS

false-positive samples have statistically significant WLS-EV estimates for the dp ratio and VRP,

respectively, indicatingWLS-EVwill often fail to reject when there is no true return predictability

and the OLS evidence is due to a false positive.

These results do not make WLS-EV immune to data mining. If, instead of OLS-based data

mining, samples were selected based on WLS-EV significance, I find that only 42% and 41% of

false-positive samples have statistically significant OLS estimates for the dp ratio and VRP,

respectively. This pattern illustrates how any partially independent estimator is a useful diagnostic

when one suspects a predictor may have been data mined for significance using a different esti-

mator. In practice, though, any data mining used to select the body of predictors in the literature

was based on OLS rather thanWLS-EV, makingWLS-EV useful in revisiting return predictabil-

ity evidence.

B.5. Stambaugh (1999) Bias Correction

I account for the small-sample bias described in Stambaugh (1999) by simulating both the xt and

subsequent returns rtþ1 under the no-predictability null, as suggested inGoyal andWelch (2008). I

generate rtþ1 and xt using the following processes:

rsimtþ1 ¼ lr þ �re�sampled
tþ1 (B3)

xsimtþ1 � lx ¼ qxðxsimt � lxÞ þ dre�sampled
tþ1 (B4)

where lr, lx, and qx are estimated from the data for the predictor in question, and x0 is chosen

from a random observation. To preserve the correlation between innovations in r and x, I jointly

re-sample (with replacement) the vector ½ �tþ1 dtþ1 �0 from the innovations estimated in the data.

For each simulated sample, I estimate the b̂ using OLS and estimate the Stambaugh (1999) bias

estimate as the cross-simulation average value of b̂. I subtract this bias estimate from both OLS

and WLS-EV point estimates throughout the paper to compute bias-corrected “Stambaugh b̂.”

B.6. Ferson, Sarkissian, and Simin (2003) Simulations

When studying the presidential puzzle in Section 4.1, I consider alternative standard errors

reflecting the bias in predictability regressions posited in Ferson, Sarkissian, and Simin (2003).

This bias occurswhen expected returns are time-varying, persistent, and unrelated to the predictor
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in question. I incorporate this possibility into the standard simulation framework described above

by generating returns using:

rsimtþ1 ¼ lsim
r;t þ b � xdatat þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RVdata

t

q
wre�sampled
tþ1 : (B5)

The only difference between these simulations and the approach summarized by Equation

(B2) is the time-varying conditional mean lsim
r;t .

Following Ferson, Sarkissian, and Simin (2003), I simulate lsim
r;t according to the following

AR(1) process:

lsim
r;t ¼ lr þ qlðlsim

r;t�1 � lrÞ þ ct; (B6)

where ct � Nð0; r2
cÞ. I use the sample average return for lr, the sample autocorrelation of the

presidential dummy (0.983) for ql, and the value of rc that makes lr;t negative in 10%

of observations (0.07%). For this value of rc, the interquartile range of monthly lr;t is ½0:2%;

0:7%� (½2:8%; 9:3%� annualized) and the 90% confidence interval is ½�0:1%; 1:1%�
(½�1:7%; 14:3%� annualized). I view this as an upper bound on reasonable variations in equilib-

rium expected returns, and therefore view my simulations as an upper bound on the plausible

magnitude of the Ferson, Sarkissian, and Simin (2003) effect in this setting.
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